×

zbMATH — the first resource for mathematics

An analysis of the convection-diffusion problems using meshless and meshbased methods. (English) Zbl 1351.76086
Summary: The numerical solution of the convection-diffusion equation represents a very important issue in many numerical methods that need some artificial methods to obtain stable and accurate solutions. In this article, a meshless method based on the local Petrov-Galerkin method is applied to solve this equation. The essential boundary condition is enforced by the transformation method, and the MLS method is used for the interpolation schemes. The streamline upwind Petrov-Galerkin (SUPG) scheme is developed to employ on the present meshless method to overcome the influence of false diffusion. In order to validate the stability and accuracy of the present method, the model is used to solve two different cases and the results of the present method are compared with the results of the upwind scheme of the MLPG method and the high order upwind scheme (QUICK) of the finite volume method. The computational results show that fairly accurate solutions can be obtained for high Peclet number and the SUPG scheme can very well eliminate the influence of false diffusion.

MSC:
76M10 Finite element methods applied to problems in fluid mechanics
65N30 Finite element, Rayleigh-Ritz and Galerkin methods for boundary value problems involving PDEs
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Cleary, P.W.; Monaghan, J.J., Conduction modeling using smoothed particle hydrodynamics, J comput phys, 148, 227-264, (1999) · Zbl 0930.76069
[2] Jiang, F.; Oliveira, M.S.A.; Sousa, A.C.M., SPH simulation of transition to turbulence for planar shear flow subjected to a streamwise magnetic field, J comput phys, 217, 485-501, (2006) · Zbl 1160.76398
[3] Khayyer, A.; Gotoh, H.; Shao, S.D., Corrected incompressible SPH method for accurate water-surface tracking in breaking waves, Coastal eng, 55, 236-250, (2008)
[4] Xu, R.; Stansby, P.; Laurence, D., Accuracy and stability in incompressible SPH (ISPH) based on the projection method and a new approach, J comput phys, 228, 6703-6725, (2009) · Zbl 1261.76047
[5] Fang, J.; Parriaux, A.; Rentschler, M., Improved SPH methods for simulating free surface flows of viscous fluids, Appl numer math, 59, 251-271, (2009) · Zbl 1194.76202
[6] Ferrari, A.; Dumbser, M.; Toro, E.F., A new 3D parallel SPH scheme for free surface flows, Comput fluids, 38, 1203-1217, (2009) · Zbl 1242.76270
[7] Grenier, N.; Antuono, M.; Colagrossi, A., A Hamiltonian interface SPH formulation for multi-fluid and free surface flows, J comput phys, 228, 8380-8393, (2009) · Zbl 1333.76056
[8] Singh, I.V.; Sandeep, K.; Prakash, R., The element free Galerkin method in three-dimensional steady state heat conduction, Int J comput eng sci, 3, 291-303, (2002)
[9] Singh, A.; Singh, I.V.; Prakash, R., Meshless element free Galerkin method for unsteady nonlinear heat transfer problems, Int J heat mass transfer, 50, 1212-1219, (2007) · Zbl 1124.80366
[10] Singh, I.V.; Tanaka, M.; Endo, M., Effect of interface on the thermal conductivity of carbon nanotube composites, Int J therm sci, 46, 842-847, (2007)
[11] Fries, T.P.; Matthies, H.G., A stabilized and coupled meshfree/meshbased method for the incompressible navier – stokes equations—part II: coupling, Comput methods appl mech eng, 195, 6191-6204, (2006) · Zbl 1178.76273
[12] Fries, T.P.; Matthies, H.G., A stabilized and coupled meshfree/meshbased method for the incompressible navier – stokes equations—part I: stabilization, Comput methods appl mech eng, 195, 6205-6224, (2006) · Zbl 1178.76274
[13] Oñate, E.; Idelsohn, S.; Zienkiewicz, O.C.; Taylor, R.L., A finite point method in computational mechanics: applications to convective transport and fluid flow, Int J numer methods eng, 39, 3839-3866, (1996) · Zbl 0884.76068
[14] Gunther, F.; Liu, W.K.; Diachin, D.; Christon, M.A., Multi-scale meshfree parallel computations for viscous, compressible flows, Comput methods appl mech eng, 190, 3-4, 279-303, (2000) · Zbl 0973.76045
[15] Lin, H.; Atluri, S.N., Meshless local petrov – galerkin (MLPG) method for convection – diffusion problems, CMES: comput modeling eng sci, 1, 45-60, (2000)
[16] Lin, H.; Atluri, S.N., The meshless local petrov – galerkin(MLPG) method for solving incompressible navier – stokes equation, CMES: comput modeling eng sci, 2, 117-142, (2001)
[17] Liu, G.R.; Wu, Y.L.; Ding, H., Meshfree weak – strong (MWS) form method and its application to incompressible flow problems, Int J numer methods fluids, 46, 1025-1047, (2004) · Zbl 1060.76627
[18] Shu, C.; Ding, H.; Yeo, K.S., Local radial basis function-based differential quadrature method and its application to solve two-dimensional incompressible navier – stokes equations, Comput methods appl mech eng, 192, 941-954, (2003) · Zbl 1025.76036
[19] Liu, Y.; Zhang, X.; Liu, M.W., A meshless method based on least-squares approach for steady and unsteady state heat conduction problems, Numer heat transfer part B, 47, 257-275, (2005)
[20] Liu, L.H.; Tan, J.Y., Meshless local petrov – galerkin approach for coupled radiative and conductive heat transfer, Int J therm sci, 46, 672-681, (2007)
[21] Wu, X.H.; Shen, S.P.; Tao, W.Q., Meshless local petrov – galerkin collocation method for two-dimensional heat conduction problems, CMES: comput modeling eng sci, 22, 65-76, (2007) · Zbl 1152.80329
[22] Wu, X.H.; Tao, W.Q., Meshless method based on the local weak-forms for steady state heat conduction problems, Int J heat mass transfer, 51, 3103-3112, (2008) · Zbl 1144.80356
[23] Arefmanesh, A.; Najafi, M.; Abdi, H., Meshless local petrov – galerkin method with unity test function for non-isothermal fluid flow, CMES: comput modeling eng sci, 25, 9-22, (2008) · Zbl 1232.76024
[24] Mohammadi, M.H., Stabilized meshless local petrov – galerkin (MLPG) method for incompressible viscous fluid flows, CMES: comput modeling eng sci, 29, 75-94, (2008) · Zbl 1232.76028
[25] Wu, S.C.; Liu, G.R.; Zhang, H.O.; Zhang, G.Y., A node-based smoothed point interpolation method (NS-PIM) for three-dimensional heat transfer problems, Int J therm sci, 48, 1367-1376, (2009)
[26] Wu, S.C.; Zhang, H.O.; Tang, Q.; Chen, L.; Wang, G.L., Meshless analysis of the substrate temperature in plasma spraying process, Int J therm sci, 48, 674-681, (2009)
[27] Atluri, S.N.; Shen, S.P., The meshless local petrov – galerkin method, (2002), Tech Science Press Encino USA · Zbl 1012.65116
[28] Atluri, S.N.; Zhu, T., A new meshless local petrov – galerkin (MLPG) approach in computational mechanics, Comput mech, 22, 117-127, (1998) · Zbl 0932.76067
[29] Jin, X.; Li, G.; Aluru, N.R., On the equivalence between least-square and kernel approximations in meshless methods, CMES: comput modeling eng sci, 2, 447-462, (2001) · Zbl 0996.65118
[30] Brooks, A.N.; Hughes, T.J.R., Streamline upwind/petrov – galerkin formulations for convection dominated flows with particular emphasis on the incompressible navier – stokes equations, Comput methods appl mech eng, 32, 199-259, (1982) · Zbl 0497.76041
[31] Zienkiewicz, O.C.; Taylor, R.L., The finite element method: fluid dynamics, vol. 3, (2000), Butterworth-Heinemann Barcelona · Zbl 0991.74004
[32] Franca, L.P.; Frey, S.; Hughes, T.J.R., Stabilized finite element methods: I applied to the advective diffusive method, Comput methods appl mech eng, 95, 253-276, (1992) · Zbl 0759.76040
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.