×

zbMATH — the first resource for mathematics

Divergence-free MHD on unstructured meshes using high order finite volume schemes based on multidimensional Riemann solvers. (English) Zbl 1351.76092
Summary: Several advances have been reported in the recent literature on divergence-free finite volume schemes for Magnetohydrodynamics (MHD). Almost all of these advances are restricted to structured meshes. To retain full geometric versatility, however, it is also very important to make analogous advances in divergence-free schemes for MHD on unstructured meshes. Such schemes utilize a staggered Yee-type mesh, where all hydrodynamic quantities (mass, momentum and energy density) are cell-centered, while the magnetic fields are face-centered and the electric fields, which are so useful for the time update of the magnetic field, are centered at the edges. Three important advances are brought together in this paper in order to make it possible to have high order accurate finite volume schemes for the MHD equations on unstructured meshes. First, it is shown that a divergence-free WENO reconstruction of the magnetic field can be developed for unstructured meshes in two and three space dimensions using a classical cell-centered WENO algorithm, without the need to do a WENO reconstruction for the magnetic field on the faces. This is achieved via a novel constrained \(L_2\)-projection operator that is used in each time step as a postprocessor of the cell-centered WENO reconstruction so that the magnetic field becomes locally and globally divergence free. Second, it is shown that recently-developed genuinely multidimensional Riemann solvers (called MuSIC Riemann solvers) can be used on unstructured meshes to obtain a multidimensionally upwinded representation of the electric field at each edge. Third, the above two innovations work well together with a high order accurate one-step ADER time stepping strategy, which requires the divergence-free nonlinear WENO reconstruction procedure to be carried out only once per time step. The resulting divergence-free ADER-WENO schemes with MuSIC Riemann solvers give us an efficient and easily-implemented strategy for divergence-free MHD on unstructured meshes. Several stringent two- and three-dimensional problems are shown to work well with the methods presented here.

MSC:
76M12 Finite volume methods applied to problems in fluid mechanics
65M08 Finite volume methods for initial value and initial-boundary value problems involving PDEs
76W05 Magnetohydrodynamics and electrohydrodynamics
Software:
RIEMANN; MUSIC
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Abgrall, R., On essentially non-oscillatory schemes on unstructured meshes: analysis and implementation, J. Comput. Phys., 114, 45-58, (1994) · Zbl 0822.65062
[2] Balbas, J.; Tadmor, E.; Wu, C.-C., Non-oscillatory central scheme for one- and two-dimensional MHD equations, J. Comput. Phys., 201, 261-285, (2004) · Zbl 1195.76304
[3] Balsara, D. S., Linearized formulation of the Riemann problem for adiabatic and isothermal magnetohydrodynamics, Astrophys. J. Suppl. Ser., 116, 119, (1998)
[4] Balsara, D. S., Total variation diminishing algorithm for adiabatic and isothermal magnetohydrodynamics, Astrophys. J. Suppl. Ser., 116, 133, (1998)
[5] Balsara, D. S.; Spicer, D. S., Maintaining pressure positivity in magnetohydrodynamic simulations, J. Comput. Phys., 148, 133-148, (1999) · Zbl 0930.76050
[6] Balsara, D. S.; Spicer, D. S., A staggered mesh algorithm using high order Godunov fluxes to ensure solenoidal magnetic fields in magnetohydrodynamic simulations, J. Comput. Phys., 149, 270-292, (1999) · Zbl 0936.76051
[7] Balsara, D. S., Divergence-free adaptive mesh refinement for magnetohydrodynamics, J. Comput. Phys., 174, 614-648, (2001) · Zbl 1157.76369
[8] Balsara, D. S., Second-order-accurate schemes for magnetohydrodynamics with divergence-free reconstruction, Astrophys. J. Suppl. Ser., 151, 149-184, (2004)
[9] Balsara, D. S., Divergence-free reconstruction of magnetic fields and WENO schemes for magnetohydrodynamics, J. Comput. Phys., 228, 5040-5056, (2009) · Zbl 1280.76030
[10] Balsara, D. S.; Kim, J. S., An intercomparison between divergence-cleaning and staggered mesh formulations for numerical magnetohydrodynamics, Astrophys. J., 602, 1079, (2004)
[11] Balsara, D. S.; Shu, C.-W., Monotonicity preserving weighted non-oscillatory schemes with increasingly high order of accuracy, J. Comput. Phys., 160, 405-452, (2000) · Zbl 0961.65078
[12] Balsara, D. S.; Altmann, C.; Munz, C. D.; Dumbser, M., A sub-cell based indicator for troubled zones in RKDG schemes and a novel class oh hybrid RKDG+HWENO schemes, J. Comput. Phys., 226, 586-620, (2007) · Zbl 1124.65072
[13] Balsara, D. S.; Rumpf, T.; Dumbser, M.; Munz, C.-D., Efficient, high accuracy ADER-WENO schemes for hydrodynamics and divergence-free magnetohydrodynamics, J. Comput. Phys., 228, 2480-2516, (2009) · Zbl 1275.76169
[14] Balsara, D. S.; Dumbser, M.; Meyer, C.; Du, H.; Xu, Z., Efficient implementation of ADER schemes for Euler and magnetohydrodynamic flow on structured meshes - comparison with Runge-Kutta methods, J. Comput. Phys., 235, 934-969, (2013) · Zbl 1291.76237
[15] Balsara, D. S., Multidimensional HLLE Riemann solver; application to Euler and magnetohydrodynamic flows, J. Comput. Phys., 229, 1970-1993, (2010) · Zbl 1303.76140
[16] Balsara, D. S., A two-dimensional HLLC Riemann solver for conservation laws: application to Euler and magnetohydrodynamic flows, J. Comput. Phys., 231, 7476-7503, (2012) · Zbl 1284.76261
[17] Balsara, D. S.; Dumbser, M.; Abgrall, R., Multidimensional HLL and HLLC Riemann solvers for unstructured meshes - with application to Euler and MHD flows, J. Comput. Phys., 261, 172-208, (2014) · Zbl 1349.76426
[18] Balsara, D. S., Multidimensional Riemann problem with self-similar internal structure - part I - application to hyperbolic conservation laws on structured meshes, J. Comput. Phys., 277, 163-200, (2014) · Zbl 1349.76303
[19] Balsara, D. S.; Dumbser, M., Multidimensional Riemann problem with self-similar internal structure - part II - application to hyperbolic conservation laws on unstructured meshes, J. Comput. Phys., 287, 269-292, (2015) · Zbl 1351.76091
[20] Balsara, D. S., Self-adjusting positivity preserving high order schemes for hydrodynamics and magnetohydrodynamics, J. Comput. Phys., 231, 7504-7517, (2012)
[21] Boscheri, W.; Dumbser, M.; Righetti, M., A semi-implicit scheme for 3D free surface flows with high-order velocity reconstruction on unstructured Voronoi meshes, Int. J. Numer. Methods Fluids, 72, 607-631, (2013)
[22] Brackbill, J. U.; Barnes, D. C., The effect of nonzero \(\mathbf{\nabla} \cdot \mathbf{B}\) on the numerical solution of the magnetohydrodynamic equations, J. Comput. Phys., 35, 426-430, (1980) · Zbl 0429.76079
[23] Brecht, S. H.; Lyon, J. G.; Fedder, J. A.; Hain, K., A simulation study of east-west IMF effects on the magnetosphere, Geophys. Res. Lett., 8, 397, (1981)
[24] Brio, M.; Wu, C. C., An upwind differencing scheme for the equations of ideal magnetohydrodynamics, J. Comput. Phys., 75, 400, (1988) · Zbl 0637.76125
[25] Cargo, P.; Gallice, G., Roe matrices for ideal MHD and systematic construction of roe matrices for systems of conservation laws, J. Comput. Phys., 136, 446, (1997) · Zbl 0919.76053
[26] Cheng, Y.; Li, F.; Qiu, J.; Xu, L., Positivity-preserving DG and central DG methods for ideal MHD equations, J. Comput. Phys., 238, 255, (2013) · Zbl 1286.76162
[27] Christlieb, A. J.; Rossmanith, J. A.; Tang, Q., Finite difference weighted essentially non-oscillatory schemes with constrained transport for ideal magnetohydrodynamics, J. Comput. Phys., 268, 302-325, (2014) · Zbl 1349.76442
[28] Cockburn, B.; Li, F.; Shu, C.-W., Locally divergence-free discontinuous Galerkin method for the Maxwell equations, J. Comput. Phys., 141, 413-442, (2005) · Zbl 1123.76341
[29] Crockett, R. K.; Colella, P.; Fisher, R. T.; Klein, R. I.; McKee, C. F., An unsplit, cell-centered Godunov method for ideal MHD, J. Comput. Phys., 203, 422, (2005) · Zbl 1143.76599
[30] Dai, W.; Woodward, P. R., An approximate Riemann solver for ideal magnetohydrodynamics, J. Comput. Phys., 111, 354-372, (1994) · Zbl 0797.76052
[31] Dai, W.; Woodward, P. R., On the divergence-free condition and conservation laws in numerical simulations for supersonic magnetohydrodynamic flows, Astrophys. J., 494, 317-335, (1998)
[32] Dedner, A.; Kemm, F.; Kröner, D.; Munz, C.-D.; Schnitzer, T.; Wesenberg, M., Hyperbolic divergence cleaning for MHD equations, J. Comput. Phys., 175, 645-673, (2002) · Zbl 1059.76040
[33] DeVore, C. R., Flux-corrected transport techniques for multidimensional compressible magnetohydrodynamics, J. Comput. Phys., 92, 142-160, (1991) · Zbl 0716.76056
[34] Diot, S.; Clain, S.; Loubere, R., Improved detection criteria for the multi-dimensional optimal order detection (MOOD) on unstructured meshes with very high-order polynomials, Comput. Fluids, 64, 43-63, (2012) · Zbl 1365.76149
[35] Dubiner, M., Spectral methods on triangles and other domains, J. Sci. Comput., 6, 345-390, (1991) · Zbl 0742.76059
[36] Dumbser, M.; Balsara, D.; Toro, E. F.; Munz, C. D., A unified framework for the construction of one-step finite volume and discontinuous Galerkin schemes on unstructured meshes, J. Comput. Phys., 227, 8209-8253, (2008) · Zbl 1147.65075
[37] Dumbser, M.; Käser, M.; Titarev, V. A.; Toro, E. F., Quadrature-free non-oscillatory finite volume schemes on unstructured meshes for nonlinear hyperbolic systems, J. Comput. Phys., 226, 204-243, (2007) · Zbl 1124.65074
[38] Dumbser, M.; Zanotti, O.; Hidalgo, A.; Balsara, D. S., ADER-WENO finite volume schemes with space-time adaptive mesh refinement, J. Comput. Phys., 248, 257-286, (2013) · Zbl 1349.76325
[39] Dumbser, M.; Käser, M., Arbitrary high order non-oscillatory finite volume schemes on unstructured meshes for linear hyperbolic systems, J. Comput. Phys., 221, 693-723, (2007) · Zbl 1110.65077
[40] Dumbser, M.; Zanotti, O.; Loubere, R.; Diot, S., A posteriori subcell limitation of the discontinuous Galerkin finite element method for hyperbolic conservation laws, J. Comput. Phys., 278, 47-75, (2014) · Zbl 1349.65448
[41] Evans, C. R.; Hawley, J. F., Simulation of magnetohydrodynamic flows: a constrained transport method, Astrophys. J., 332, 659, (1989)
[42] Falle, S. A.E. G.; Komissarov, S. S.; Joarder, P., A multidimensional upwind scheme for magnetohydrodynamics, Mon. Not. R. Astron. Soc., 297, 265-277, (1998)
[43] Gardiner, T.; Stone, J. M., An unsplit Godunov method for ideal MHD via constrained transport, J. Comput. Phys., 205, 509, (2005) · Zbl 1087.76536
[44] Gardiner, T.; Stone, J. M., An unsplit Godunov method for ideal MHD via constrained transport in three dimensions, J. Comput. Phys., 227, 4123, (2008) · Zbl 1317.76057
[45] Gurski, K. F., An HLLC-type approximate Riemann solver for ideal magnetohydrodynamics, SIAM J. Sci. Comput., 25, 2165, (2004) · Zbl 1133.76358
[46] Hu, C.; Shu, C.-W., Weighted essentially non-oscillatory schemes on triangular meshes, J. Comput. Phys., 150, 97-127, (1999) · Zbl 0926.65090
[47] Jeffrey, A.; Taniuti, T., Nonlinear wave propagation, (1964), Academic New York · Zbl 0117.21103
[48] Jiang, G.-S.; Shu, C.-W., Efficient implementation of weighted ENO schemes, J. Comput. Phys., 126, 202-228, (1996) · Zbl 0877.65065
[49] Jiang, G.-S.; Wu, C. C., A high-order WENO finite difference scheme for the equations of ideal magnetohydrodynamics, J. Comput. Phys., 150, 2, 561-594, (1999) · Zbl 0937.76051
[50] Lee, D., A solution accurate, efficient and stable unsplit staggered mesh scheme for three dimensional magnetohydrodynamics, J. Comput. Phys., 243, 269-292, (2013) · Zbl 1349.76494
[51] Li, F.; Xu, L.; Yakovlev, S., Central discontinuous Galerkin methods for ideal MHD equations with the exactly divergence-free magnetic field, J. Comput. Phys., 230, 12, 4828-4847, (2011) · Zbl 1416.76117
[52] Li, F.; Shu, C.-W., Locally divergence-free discontinuous Galerkin methods for MHD equations, J. Sci. Comput., 22-23, 413-442, (2005) · Zbl 1123.76341
[53] Li, S., High order central scheme on overlapping cells for magneto-hydrodynamic flows with and without constrained transport method, J. Comput. Phys., 227, 15, 7368-7393, (2008) · Zbl 1201.76311
[54] Londrillo, P.; DelZanna, L., On the divergence-free condition in Godunov-type schemes for ideal magnetohydrodynamics: the upwind constrained transport method, J. Comput. Phys., 195, 17-48, (2004) · Zbl 1087.76074
[55] Loubere, R.; Dumbser, M.; Diot, S., A new family of high order unstructured MOOD and ADER finite volume schemes for multidimensional systems of hyperbolic conservation laws, Commun. Comput. Phys., 16, 3, 718-763, (2014) · Zbl 1373.76137
[56] Miyoshi, T.; Kusano, K., A multi-state HLL approximate Riemann solver for ideal magnetohydrodynamics, J. Comput. Phys., 208, 315-344, (2005) · Zbl 1114.76378
[57] Mocz, P.; Vogelsberger, M.; Hernquist, L., A constrained transport scheme for MHD on unstructured and moving meshes, Mon. Not. R. Astron. Soc., 442, 42-55, (2014)
[58] Orszag, S. A.; Tang, C. M., Small-scale structure of two-dimensional magnetohydrodynamic turbulence, J. Fluid Mech., 90, 129, (1979)
[59] Powell, K. G., An approximate Riemann solver for MHD (that actually works in more than one dimension), (1994), ICASE Report No. 94-24, Langley, VA
[60] Proriol, J., Sur une famille de polynomes à deux variables orthogonaux dans un triangle, C. R. Acad. Sci. Paris, 257, 2459-2461, (1957) · Zbl 0080.05204
[61] Roe, P. L.; Balsara, D. S., Notes on the eigensystem of magnetohydrodynamics, SIAM J. Appl. Math., 56, 57, (1996) · Zbl 0845.35092
[62] Ryu, D.; Jones, T. W., Numerical MHD in astrophysics: algorithm and tests for one-dimensional flow, Astrophys. J., 442, 228, (1995)
[63] Ryu, D.; Miniati, F.; Jones, T. W.; Frank, A., A divergence-free upwind code for multidimensional magnetohydrodynamic flows, Astrophys. J., 509, 244-255, (1998)
[64] Schulz-Rinne, C. W.; Collins, J. P.; Glaz, H. M., Numerical solution of the Riemann problem for two-dimensional gas dynamics, SIAM J. Sci. Comput., 14, 7, 1394-1414, (1993) · Zbl 0785.76050
[65] Sherwin, S. J.; Karniadakis, G. E., A triangular spectral element method. applications to the incompressible Navier-Stokes equations, Comput. Methods Appl. Mech. Eng., 123, 189-229, (1995) · Zbl 1075.76621
[66] Shu, C.-W.; Osher, S. J., Efficient implementation of essentially non-oscillatory shock capturing schemes, J. Comput. Phys., 77, 439-471, (1988) · Zbl 0653.65072
[67] Shu, C.-W.; Osher, S. J., Efficient implementation of essentially non-oscillatory shock capturing schemes II, J. Comput. Phys., 83, 32-78, (1989) · Zbl 0674.65061
[68] Taube, A.; Dumbser, M.; Balsara, D. S.; Munz, C. D., Arbitrary high order discontinuous Galerkin schemes for the MHD equations, SIAM J. Sci. Comput., 30, 3, 441-461, (2007) · Zbl 1176.76075
[69] Toth, G., The \(\operatorname{\nabla} \cdot \mathbf{B} = 0\) constraint in shock-capturing MHD codes, J. Comput. Phys., 161, 605, (2000)
[70] Titarev, V. A.; Toro, E. F., ADER: arbitrary high order Godunov approach, J. Sci. Comput., 17, 1-4, 609-618, (2002) · Zbl 1024.76028
[71] Titarev, V. A.; Toro, E. F., ADER schemes for three-dimensional nonlinear hyperbolic systems, J. Comput. Phys., 204, 715-736, (2005) · Zbl 1060.65641
[72] Toro, E. F.; Titarev, V. A., Solution of the generalized Riemann problem for advection reaction equations, Proc. R. Soc. Lond. Ser. A, 458, 271-281, (2002) · Zbl 1019.35061
[73] Xu, Z.; Balsara, D. S.; Du, H., Divergence-free WENO reconstruction-based finite volume scheme for solving ideal MHD equations on triangular meshes, Commun. Comput. Phys., (2015), submitted for publication
[74] Yee, K. S., Numerical solution of initial boundary value problems involving Maxwell equation in an isotropic media, IEEE Trans. Antennas Propag., 14, 302, (1966) · Zbl 1155.78304
[75] Zachary, A. L.; Malagoli, A.; Colella, P., A higher-order Godunov method for multi-dimensional ideal magnetohydrodynamics, SIAM J. Sci. Comput., 15, 263, (1994) · Zbl 0797.76063
[76] Stroud, A. H., Approximate calculation of multiple integrals, (1971), Prentice-Hall Inc. Englewood Cliffs, NJ · Zbl 0379.65013
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.