zbMATH — the first resource for mathematics

An efficient immersed boundary treatment for complex moving object. (English) Zbl 1351.76169
Summary: An efficient immersed boundary treatment for simulation of flexible moving body immersed in fluid is presented. The level set signed distance function is used to indicate body surface. A simple mapping strategy is proposed to avoid costly signed distance re-initialization computations. The strategy is efficient for both rigid and deformable structures, and can be extended to 3-D case easily. With the use of signed distance function, reconstruction of flow variables on a body surface can be easily implemented through linear, bilinear or quadratic interpolation. In order to suppress the pressure oscillations caused by the role conversion of forcing points and fluid points, a modified interpolation scheme is presented by introducing a dynamic weight term to the fluid point. Together with local grid refinement and using larger time step, the pressure oscillations can be effectively diminished by the modified interpolation scheme. The proposed method is validated by 2-D numerical simulations on a uniform flow past a fixed cylinder, in-line and transversely oscillating cylinders, a flapping wing, a 3-D simulation on a uniform flow past a rectangle plane with an initial attack angle and a moving anguilliform swimmer. Present numerical results are compared with other CFD solutions as well as experimental results.

76M20 Finite difference methods applied to problems in fluid mechanics
PDF BibTeX Cite
Full Text: DOI
[1] Peskin, C. S., Flow patterns around heart valves: a numerical method, J. Comput. Phys., 10, 252-271, (1972) · Zbl 0244.92002
[2] Goldstein, D.; Handler, R.; Sirovich, L., Modeling a no-slip flow boundary with an external force field, J. Comput. Phys., 105, 354-366, (1993) · Zbl 0768.76049
[3] Mohd-Yusof, J., Combined immersed-boundary/B-spline methods for simulations of flow in complex geometries, (Annual Research Briefs, (1997), NASA Ames Research Center/Stanford University Center for Turbulence Research Stanford, CA), 317-327
[4] Fadlun, E. A.; Verzicco, R.; Orlandi, P.; Mohd-Yusof, J., Combined immersed-boundary finite difference methods for three-dimensional complex flow simulations, J. Comput. Phys., 161, 35-60, (2000) · Zbl 0972.76073
[5] Balaras, E., Modeling complex boundaries using an external force field on fixed Cartesian grids in large eddy simulations, Comput. Fluids, 33, 375-404, (2004) · Zbl 1088.76018
[6] Kim, J.; Kim, D.; Choi, H., An immersed-boundary finite-volume method for simulations of flow in complex geometries, J. Comput. Phys., 171, 132-150, (2001) · Zbl 1057.76039
[7] Gilmanov, A.; Sotiropoulos, F.; Balaras, E., A general reconstruction algorithm for simulating flows with complex 3D immersed boundaries on Cartesian grids, J. Comput. Phys., 191, 660-669, (2003) · Zbl 1134.76406
[8] Yang, J.; Balaras, E., An embedded-boundary formulation for large-eddy simulation of turbulent flows interacting with moving boundaries, J. Comput. Phys., 315, 12-40, (2006) · Zbl 1140.76355
[9] Yang, J.; Stern, F., A simple and efficient direct forcing immersed boundary framework for fluid-structure interactions, J. Comput. Phys., 231, 5029-5061, (2012) · Zbl 1351.74025
[10] Mittal, R.; Dong, H.; Bozkurttas, M.; Najjar, F. M.; Vargas, A.; von Loebbeck, A., A versatile sharp interface immersed boundary method for incompressible flows with complex boundaries, J. Comput. Phys., 227, 4825-4852, (2008) · Zbl 1388.76263
[11] Tseng, Y. H.; Ferziger, J. H., A ghost-cell immersed boundary method for flow in complex geometry, J. Comput. Phys., 192, 593-623, (2003) · Zbl 1047.76575
[12] Seo, J. H.; Mittal, R., A sharp-interface immersed boundary method with improved mass conservation and reduced spurious pressure oscillations, J. Comput. Phys., 230, 7347-7363, (2011) · Zbl 1408.76162
[13] Lee, J.; You, D., An implicit ghost-cell immersed boundary method for simulations of moving body problems with control of spurious force oscillations, J. Comput. Phys., 233, 295-314, (2013)
[14] Li, C. W.; Wang, L. L., An immersed boundary finite difference method for LES of flow around bluff shapes, Int. J. Numer. Methods Fluids, 46, 85-107, (2004) · Zbl 1060.76557
[15] Hu, C. H.; Kashiwagi, M., A CIP-based method for numerical simulation of violent free surface flows, J. Mar. Sci. Technol., 6, 143-157, (2004)
[16] Choi, J.; Oberoi, R.; Edwards, J.; Rosati, J., An immersed boundary method for complex incompressible flows, J. Comput. Phys., 224, 757-784, (2007) · Zbl 1123.76351
[17] Choi, H.; Moin, P., Effects of the computational time step on numerical solutions of turbulent flow, J. Comput. Phys., 113, 1-4, (1994) · Zbl 0807.76051
[18] Leonard, B. P., A stable and accurate convection modelling procedure based on quadratic upstream interpolation, Comput. Methods Appl. Mech. Eng., 19, 59-98, (1979) · Zbl 0423.76070
[19] Beam, R. M.; Warming, R. F., An implicit finite-difference algorithm for hyperbolic systems in conservation-law form, J. Comput. Phys., 22, 87-110, (1976) · Zbl 0336.76021
[20] Jiang, H.; Wong, Y., A parallel alternating direction implicit preconditioning method, J. Comput. Appl. Math., 36, 209-226, (1991) · Zbl 0734.65027
[21] Huang, W. X.; Sung, H. J., Improvement of mass source/sink for an immersed boundary method, Int. J. Numer. Methods Fluids, 53, 1659-1671, (2007) · Zbl 1113.76070
[22] Osher, S.; Sethian, J., Fronts propagating with curvature dependent speed: algorithms based on a Hamilton-Jacobi formulation, J. Comput. Phys., 79, 12-49, (1988) · Zbl 0659.65132
[23] Baerentzen, J. A.; Aanaes, H., Signed distance computation using the angle weighted pseudonormal, IEEE Trans. Vis. Comput. Graph., 11, 243-253, (2005)
[24] Guilmineau, E.; Queutey, P., A numerical simulation of vortex shedding from an oscillating circular cylinder, J. Fluids Struct., 16, 773-794, (2002)
[25] Williamson, C. H.K., Oblique and parallel models of vortex shedding in the wake of a circular cylinder at low Reynolds numbers, J. Fluid Mech., 206, 579-627, (1989)
[26] Griffin, O. M., The unsteady wake of an oscillating cylinder at low Reynolds number, J. Appl. Mech., 38, 729-738, (1971)
[27] Lu, X. Y.; Dalton, C., Calculation of the timing of vortex formation from an oscillating cylinder, J. Fluids Struct., 10, 527-541, (1996)
[28] Dütsch, H.; Durst, F.; Becker, S.; Lienhart, H., Low-Reynolds-number flow around an oscillating circular cylinder at low Keulegan-Carpenter numbers, J. Fluid Mech., 360, 249-271, (1998) · Zbl 0922.76024
[29] Gu, W.; Chyu, C.; Rockwell, D., Timing of vortex formation from an oscillating cylinder, Phys. Fluids, 6, 3677-3682, (1994)
[30] Wang, Z. J., Two dimensional mechanism for insect hovering, Phys. Rev. Lett., 85, 2216-2219, (2000)
[31] Taira, K.; Colonius, T., Three-dimensional flows around low-aspect-ratio flat-plate wings at low Reynolds numbers, J. Fluid Mech., 623, 187-207, (2009) · Zbl 1157.76321
[32] Hunt, J. C.R.; Wray, A. A.; Moin, P., Eddies, streams and convergence zones in turbulent flows, (Proc. of the Summer Program 1988, (1988), Center for Turbulence Research, Stanford University), 193-208
[33] Triantafyllou, G. S.; Triantafyllou, M. S.; Grosenbaugh, M. A., Optimal thrust development in oscillating foils with application to fish propulsion, J. Fluids Struct., 7, 205-224, (1993)
[34] Tytell, E. D.; Lauder, G. V., The hydrodynamics of eel swimming I. wake structure, J. Exp. Biol., 207, 1825-1841, (2004)
[35] Borazjani, I.; Sotiropoulos, F., Numerical investigation of the hydrodynamics of anguilliform swimming in the transitional and inertial flow regimes, J. Exp. Biol., 212, 576-592, (2009)
[36] Shen, L.; Zhang, X.; Yue, D. K.P.; Triantafyllou, M. S., Turbulent flow over a flexible wall undergoing a streamwise travelling wave motion, J. Fluid Mech., 484, 197-221, (2003) · Zbl 1058.76032
[37] Buchholz, J. H.J.; Smits, A. J., The wake structure and thrust performance of a rigid low-aspect-ratio pitching panel, J. Fluid Mech., 603, 331-365, (2008) · Zbl 1151.76312
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.