×

zbMATH — the first resource for mathematics

A subfield lattice attack on overstretched NTRU assumptions. Cryptanalysis of some FHE and graded encoding schemes. (English) Zbl 1351.94019
Robshaw, Matthew (ed.) et al., Advances in cryptology – CRYPTO 2016. 36th annual international cryptology conference, Santa Barbara, CA, USA, August 14–18, 2016. Proceedings. Part I. Berlin: Springer (ISBN 978-3-662-53017-7/pbk; 978-3-662-53018-4/ebook). Lecture Notes in Computer Science 9814, 153-178 (2016).
Summary: The subfield attack exploits the presence of a subfield to solve overstretched versions of the NTRU assumption: norming the public key \(h\) down to a subfield may lead to an easier lattice problem and any sufficiently good solution may be lifted to a short vector in the full NTRU-lattice. This approach was originally sketched in a paper of C. Gentry and M. Szydlo [Eurocrypt 2002, Lect. Notes Comput. Sci. 2332, 299–320 (2002; Zbl 1055.94015)] and there also attributed to Jonsson, Nguyen and Stern. However, because it does not apply for small moduli and hence NTRUEncrypt, it seems to have been forgotten. In this work, we resurrect this approach, fill some gaps, analyze and generalize it to any subfields and apply it to more recent schemes. We show that for significantly larger moduli – a case we call overstretched – the subfield attack is applicable and asymptotically outperforms other known attacks.{
} This directly affects the asymptotic security of the bootstrappable homomorphic encryption schemes LTV and YASHE which rely on a mildly overstretched NTRU assumption: the subfield lattice attack runs in sub-exponential time \(2^{O(\lambda /\log ^{1/3}\lambda)}\) invalidating the security claim of \(2^{\varTheta (\lambda)}\). The effect is more dramatic on GGH-like multilinear maps: this attack can run in polynomial time without encodings of zero nor the zero-testing parameter, yet requiring an additional quantum step to recover the secret parameters exactly.{
} We also report on practical experiments. Running LLL in dimension 512 we obtain vectors that would have otherwise required running BKZ with block-size 130 in dimension 8192. Finally, we discuss concrete aspects of this attack, the condition on the modulus \(q\) to guarantee full immunity, discuss countermeasures and propose open questions.
For the entire collection see [Zbl 1344.94001].

MSC:
94A60 Cryptography
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Albrecht, M., Bai, S., Cadé, D., Pujol, X., Stehlé, D.: fpLLL-4.0, a floating-point LLL implementation. https://github.com/dstehle/fplll
[2] Albrecht, M.R., Cocis, C., Laguillaumie, F., Langlois, A.: Implementing candidate graded encoding schemes from ideal lattices. In: Iwata, T., et al. (eds.) ASIACRYPT 2015. LNCS, vol. 9453, pp. 752–775. Springer, Heidelberg (2015). doi: 10.1007/978-3-662-48800-3_31 · Zbl 1382.94041
[3] Bernstein, D.J., Chuengsatiansup, C., Lange, T., van Vredendaal, C.: NTRU prime. Cryptology ePrint Archive, Report 2016/461 (2016). http://eprint.iacr.org/
[4] Bernstein, D.: A subfield-logarithm attack against ideal lattices, Febuary 2014. http://blog.cr.yp.to/20140213-ideal.html
[5] Biasse, J.-F., Fieker, C.: Subexponential class group, unit group computation in large degree number fields. LMS J. Comput. Math. 17(Suppl. A), 385–403 (2014) · Zbl 1369.11103
[6] Biasse, J.-F.: Subexponential time relations in the class group of large degree number fields. Adv. Math. Commun. 8(4), 407–425 (2014) · Zbl 1358.11125
[7] Bos, J.W., Lauter, K., Loftus, J., Naehrig, M.: Improved security for a ring-based fully homomorphic encryption scheme. In: Stam, M. (ed.) IMACC 2013. LNCS, vol. 8308, pp. 45–64. Springer, Heidelberg (2013) · Zbl 1317.94088
[8] Biasse, J.-F., Song, F.: Efficient quantum algorithms for computing class groups and solving the principal ideal problem in arbitrary degree number fields. In: 27th ACM-SIAM Symposium on Discrete Algorithms (SODA 2016) (2016) · Zbl 1409.68121
[9] Brakerski, Z., Vaikuntanathan, V.: Efficient fully homomorphic encryption from (standard) LWE. In: Ostrovsky, R. (ed.) 52nd FOCS, pp. 97–106. IEEE Computer Society Press, October 2011 · Zbl 1292.94038
[10] Cramer, R., Ducas, L., Peikert, C., Regev, O.: Recovering short generators of principal ideals in cyclotomic rings. In: Fischlin, M., Coron, J.-S. (eds.) EUROCRYPT 2016. LNCS, vol. 9666, pp. 559–585. Springer, Heidelberg (2016). doi: 10.1007/978-3-662-49896-5_20 · Zbl 1371.94630
[11] Canetti, R., Garay, J.A. (eds.): CRYPTO 2013. LNCS, vol. 8042. Springer, Heidelberg (2013) · Zbl 1270.94007
[12] Campbell, P., Groves, M., Shepherd, D.: Soliloquy: a cautionary tale. In: ETSI 2nd Quantum-Safe Crypto Workshop (2014). http://docbox.etsi.org/Workshop/2014/201410_CRYPTO/S07_Systems_and_Attacks/S07_Groves_Annex.pdf
[13] Castryck, W., Iliashenko, I., Vercauteren, F.: Provably weak instances of ring-LWE revisited. In: Fischlin, M., Coron, J.-S. (eds.) EUROCRYPT 2016. LNCS, vol. 9665, pp. 147–167. Springer, Heidelberg (2016). doi: 10.1007/978-3-662-49890-3_6 · Zbl 1347.94025
[14] Cheon, J.H., Jeong, J., Lee, C.: An algorithm for NTRU problems and cryptanalysis of the GGH multilinear map without an encoding of zero. Cryptology ePrint Archive, Report 2016/139 (2016). http://eprint.iacr.org/ · Zbl 1404.94053
[15] Chen, H., Lauter, K., Stange, K.E.: Attacks on search RLWE. Cryptology ePrint Archive, Report 2015/971 (2015). http://eprint.iacr.org/2015/971
[16] Coron, J.-S., Lepoint, T., Tibouchi, M.: Practical multilinear maps over the integers. In: Canetti, R., Garay, J.A. (eds.) [CG13], pp. 476–493 · Zbl 1309.94139
[17] Chen, Y., Nguyen, P.Q.: BKZ 2.0: better lattice security estimates. In: Lee, D.H., Wang, X. (eds.) ASIACRYPT 2011. LNCS, vol. 7073, pp. 1–20. Springer, Heidelberg (2011) · Zbl 1227.94037
[18] Coppersmith, D., Shamir, A.: Lattice attacks on NTRU. In: Fumy, W. (ed.) EUROCRYPT 1997. LNCS, vol. 1233, pp. 52–61. Springer, Heidelberg (1997)
[19] Costache, A., Smart, N.P.: Which ring based somewhat homomorphic encryption scheme is best? Cryptology ePrint Archive, Report 2015/889 (2015). http://eprint.iacr.org/2015/889 · Zbl 1334.94070
[20] Ducas, L., Durmus, A., Lepoint, T., Lyubashevsky, V.: Lattice signatures and bimodal gaussians. In: Canetti, R., Garay, J.A. (eds.) [CG13], pp. 40–56 · Zbl 1310.94141
[21] The Sage Developers: Sage Mathematics Software (2015). http://www.sagemath.org
[22] Doröz, Y., Yin, H., Sunar, B.: Homomorphic AES evaluation using the modified LTV scheme. Des. Codes Crypt. 80(2), 333–358 (2016). http://dx.doi.org/10.1007/s10623-015-0095-1 · Zbl 1402.94055
[23] Eisenträger, K., Hallgren, S., Kitaev, A., Song, F.: A quantum algorithm for computing the unit group of an arbitrary degree number field. In: Proceedings of the 46th Annual ACM Symposium on Theory of Computing, pp. 293–302. ACM (2014) · Zbl 1315.68134
[24] Eisenträger, K., Hallgren, S., Lauter, K.: Weak instances of PLWE. In: Joux, A., Youssef, A. (eds.) SAC 2014. LNCS, vol. 8781, pp. 183–194. Springer, Heidelberg (2014) · Zbl 1336.94045
[25] Elias, Y., Lauter, K.E., Ozman, E., Stange, K.E.: Provably weak instances of ring-LWE. In: Gennaro, R., Robshaw, M. (eds.) [GR15], pp. 63–92 · Zbl 1336.94046
[26] Ferraguti, A., Micheli, G.: On the Mertens-Cesàro theorem for number fields. Bull. Aust. Math. Soc. 93(2), 199–210 (2016). doi: 10.1017/S0004972715001288 . http://journals.cambridge.org/article_S0004972715001288 · Zbl 1337.11071
[27] Gentry, C.: Key recovery and message attacks on NTRU-composite. In: Pfitzmann, B. (ed.) [Pfi01], pp. 182–194 · Zbl 0981.94013
[28] Garg, S., Gentry, C., Halevi, S.: Candidate multilinear maps from ideal lattices. In: Johansson, T., Nguyen, P.Q. (eds.) EUROCRYPT 2013. LNCS, vol. 7881, pp. 1–17. Springer, Heidelberg (2013) · Zbl 1300.94055
[29] Garg, S., Gentry, C., Halevi, S., Raykova, M., Sahai, A., Waters, B.: Candidate indistinguishability obfuscation and functional encryption for all circuits. In: 54th FOCS, pp. 40–49. IEEE Computer Society Press, October 2013 · Zbl 1348.94048
[30] Gama, N., Nguyen, P.Q.: Finding short lattice vectors within Mordell’s inequality. In: Ladner, R.E., Dwork, C. (eds.) 40th ACM STOC, pp. 207–216. ACM Press, May 2008 · Zbl 1230.11153
[31] Gennaro, R., Robshaw, M. (eds.): CRYPTO 2015. LNCS, vol. 9215. Springer, Heidelberg (2015) · Zbl 1319.94003
[32] Gentry, C., Szydlo, M.: Cryptanalysis of the revised NTRU signature scheme. In: Knudsen, L.R. (ed.) EUROCRYPT 2002. LNCS, vol. 2332, pp. 299–320. Springer, Heidelberg (2002) · Zbl 1055.94015
[33] Howgrave-Graham, N.: A hybrid lattice-reduction and meet-in-the-middle attack against NTRU. In: Menezes, A. (ed.) CRYPTO 2007. LNCS, vol. 4622, pp. 150–169. Springer, Heidelberg (2007) · Zbl 1215.94053
[34] Hoffstein, J., Howgrave-Graham, N., Pipher, J., Silverman, J.H., Whyte, W.: NTRUSIGN: digital signatures using the NTRU lattice. In: Joye, M. (ed.) CT-RSA 2003. LNCS, vol. 2612, pp. 122–140. Springer, Heidelberg (2003) · Zbl 1039.94525
[35] Hu, Y., Jia, H.: Cryptanalysis of GGH map. Cryptology ePrint Archive, Report 2015/301 (2015). http://eprint.iacr.org/2015/301
[36] Hoffstein, J., Pipher, J., Silverman, J.H.: NTRU: a new high speed public key cryptosystem. In: Draft Distributed at Crypto 1996 (1996). http://web.securityinnovation.com/hubfs/files/ntru-orig.pdf · Zbl 1067.94538
[37] Hoffstein, J., Pipher, J., Silverman, J.H.: NTRU: a ring-based public key cryptosystem. In: Buhler, J.P. (ed.) ANTS 1998. LNCS, vol. 1423, pp. 267–288. Springer, Heidelberg (1998) · Zbl 1067.94538
[38] Hoffstein, J., Pipher, J., Silverman, J.H.: NSS: an NTRU lattice-based signature scheme. In: Pfitzmann, B. (ed.) [Pfi01], pp. 211–228 · Zbl 0981.94039
[39] Hanrot, G., Pujol, X., Stehlé, D.: Analyzing blockwise lattice algorithms using dynamical systems. In: Rogaway, P. (ed.) CRYPTO 2011. LNCS, vol. 6841, pp. 447–464. Springer, Heidelberg (2011) · Zbl 1287.94072
[40] Hoffstein, J., Pipher, J., Schanck, J.M., Silverman, J.H., Whyte, W., Zhang, Z.: Choosing parameters for NTRUEncrypt. Cryptology ePrint Archive, Report 2015/708 (2015). http://eprint.iacr.org/2015/708 · Zbl 1383.94022
[41] Hoffstein, J., Silverman, J.H., Whyte, W.: Meet-in-the-middle attack on an ntru private key, 2006. Technical report, NTRU Cryptosystems, Report #04, July 2006. http://www.ntru.com
[42] Hauteville, A., Tillich, J.-P.: New algorithms for decoding in the rank metric and an attack on the LRPC cryptosystem. In: IEEE International Symposium on Information Theory, ISIT 2015, pp. 2747–2751 (2015)
[43] Kirchner, P., Fouque, P.-A.: An improved BKW algorithm for LWE with applications to cryptography and lattices. In: Gennaro, R., Robshaw, M. (eds.) [GR15], pp. 43–62 · Zbl 1336.94058
[44] Löndahl, C., Johansson, T.: Improved algorithms for finding low-weight polynomial multiples in \[ f_{2}[x] \] and some cryptographic applications. Des. Codes Crypt. 73(2), 625–640 (2014) · Zbl 1335.11098
[45] Lenstra, A.K., Lenstra Jr., H.W., Lovász, L.: Factoring polynomials with rational coefficients. Math. Ann. 261(4), 515–534 (1982) · Zbl 0488.12001
[46] Lepoint, T., Naehrig, M.: A comparison of the homomorphic encryption schemes \[ \mathsf {FV} \] and \[ \mathsf {YASHE} \] . In: Pointcheval, D., Vergnaud, D. (eds.) AFRICACRYPT. LNCS, vol. 8469, pp. 318–335. Springer, Heidelberg (2014) · Zbl 1318.94071
[47] Loidreau, P.: On cellular codes and their cryptographic applications. In: ACCT, Fourteenth International Workshop on Algebraic and Combinatorial Coding Theory, pp. 234–239 (2014)
[48] Lovasz, L.: An Algorithmic Theory of Numbers, Graphs and Convexity. CBMS-NSF Regional Conference Series in Applied Mathematics. Society for Industrial and Applied Mathematics, Philadelphia (1987)
[49] Lyubashevsky, V., Peikert, C., Regev, O.: On ideal lattices and learning with errors over rings. In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS, vol. 6110, pp. 1–23. Springer, Heidelberg (2010) · Zbl 1279.94099
[50] Lenstra, H.W., Silverberg, A.: Revisiting the Gentry-Szydlo algorithm. In: Garay, J.A., Gennaro, R. (eds.) CRYPTO 2014, Part I. LNCS, vol. 8616, pp. 280–296. Springer, Heidelberg (2014) · Zbl 1343.94070
[51] Langlois, A., Stehlé, D., Steinfeld, R.: GGHLite: more efficient multilinear maps from ideal lattices. In: Nguyen, P.Q., Oswald, E. (eds.) EUROCRYPT 2014. LNCS, vol. 8441, pp. 239–256. Springer, Heidelberg (2014) · Zbl 1332.94071
[52] López-Alt, A., Tromer, E., Vaikuntanathan, V.: On-the-fly multiparty computation on the cloud via multikey fully homomorphic encryption. In: Karloff, H.J., Pitassi, T. (eds.) 44th ACM STOC, pp. 1219–1234. ACM Press, May 2012 · Zbl 1286.68114
[53] Micciancio, D.: Generalized compact knapsacks, cyclic lattices, and efficient one-way functions from worst-case complexity assumptions. In: 43rd FOCS, pp. 356–365. IEEE Computer Society Press, November 2002
[54] Peikert, C.: How (not) to instantiate ring-LWE. Cryptology ePrint Archive, Report 2016/351 (2016). http://eprint.iacr.org/ · Zbl 1421.94066
[55] Pfitzmann, B. (ed.): EUROCRYPT 2001. LNCS, vol. 2045. Springer, Heidelberg (2001) · Zbl 0961.00037
[56] Pollard, J.M.: Theorems on factorization and primality testing. In: Math-ematical Proceedings of the Cambridge Philosophical Society, vol. 76, no. 03, pp. 521–528 (1974) · Zbl 0294.10005
[57] Samuel, P.: Algebraic Theory of Numbers. Hermann, Paris (1970) · Zbl 0215.36001
[58] Schnorr, C.-P.: A hierarchy of polynomial time lattice basis reduction algorithms. Theor. Comput. Sci. 53, 201–224 (1987) · Zbl 0642.10030
[59] Sittinger, B.D.: The probability that random algebraic integers are relatively r-prime. J. Number Theory 130(1), 164–171 (2010) · Zbl 1262.11089
[60] Stehlé, D., Steinfeld, R.: Making NTRU as secure as worst-case problems over ideal lattices. In: Paterson, K.G. (ed.) EUROCRYPT 2011. LNCS, vol. 6632, pp. 27–47. Springer, Heidelberg (2011) · Zbl 1281.94057
[61] Stehlé, D., Steinfeld, R., Tanaka, K., Xagawa, K.: Efficient public key encryption based on ideal lattices. In: Matsui, M. (ed.) ASIACRYPT 2009. LNCS, vol. 5912, pp. 617–635. Springer, Heidelberg (2009) · Zbl 1267.94132
[62] Washington, L.C.: Introduction to Cyclotomic Fields. Graduate Texts in Mathematics. Springer, New York (1997) · Zbl 0966.11047
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.