## On bipartite distance-regular graphs with exactly two irreducible T-modules with endpoint two.(English)Zbl 1352.05196

Summary: Let $$\Gamma$$ denote a bipartite distance-regular graph with diameter $$D \geq 4$$ and valency $$k \geq 3$$. Let $$X$$ denote the vertex set of {$$\Gamma$$}, and let $$A$$ denote the adjacency matrix of $$\Gamma$$. For $$x \in X$$ let $$T = T(x)$$ denote the subalgebra of $$\text{Mat}_X(\mathbb{C})$$ generated by $$A$$, $$E_0^\ast, E_1^\ast, \ldots, E_D^\ast$$, where for $$0 \leq i \leq D$$, $$E_i^\ast$$ represents the projection onto the $$i$$th subconstituent of $$\Gamma$$ with respect to $$x$$. We refer to $$T$$ as the Terwilliger algebra of $$\Gamma$$ with respect to $$x$$. An irreducible $$T$$-module $$W$$ is said to be thin whenever dim $$E_i^\ast W \leq 1$$ for $$0 \leq i \leq D$$. By the endpoint of $$W$$ we mean $$\min\{i \mid E_i^\ast W \neq 0 \}$$. For $$0 \leq i \leq D$$, let $$\operatorname{\Gamma}_i(z)$$ denote the set of vertices in $$X$$ that are distance $$i$$ from vertex $$z$$. Define a parameter $$\operatorname{\Delta}_2$$ in terms of the intersection numbers by $$\operatorname{\Delta}_2 = (k - 2)(c_3 - 1) -(c_2 - 1) p_{22}^2$$. In this paper we prove the following are equivalent: (i) $$\operatorname{\Delta}_2 > 0$$ and for $$2 \leq i \leq D - 2$$ there exist complex scalars $$\alpha_i, \beta_i$$ with the following property: for all $$x, y, z \in X$$ such that $$\partial(x, y) = 2$$, $$\partial(x, z) = i$$, $$\partial(y, z) = i$$ we have $$\alpha_i + \beta_i | \operatorname{\Gamma}_1(x) \cap \operatorname{\Gamma}_1(y) \cap \operatorname{\Gamma}_{i - 1}(z) | = | \operatorname{\Gamma}_{i - 1}(x) \cap \operatorname{\Gamma}_{i - 1}(y) \cap \operatorname{\Gamma}_1(z) |$$; (ii) For all $$x \in X$$ there exist up to isomorphism exactly two irreducible modules for the Terwilliger algebra $$T(x)$$ with endpoint two, and these modules are thin.

### MSC:

 05E30 Association schemes, strongly regular graphs 05C12 Distance in graphs
Full Text:

### References:

  Bannai, E.; Ito, T., Algebraic combinatorics I: association schemes, Benjamin-Cummings Lecture Note, vol. 58, (1984), Menlo Park · Zbl 0555.05019  Brouwer, A. E.; Cohen, A. M.; Neumaier, A., Distance-regular graphs, (1989), Springer-Verlag Berlin · Zbl 0747.05073  Curtin, B., 2-homogeneous bipartite distance-regular graphs, Discrete Math., 187, 39-70, (1998) · Zbl 0958.05143  Curtin, B., Bipartite distance-regular graphs, part I, Graphs Combin., 15, 143-158, (1999) · Zbl 0927.05083  Curtin, B., Bipartite distance-regular graphs, part II, Graphs Combin., 15, 377-391, (1999) · Zbl 0939.05088  Curtin, B., The local structure of a bipartite distance-regular graph, European J. Combin., 20, 739-758, (1999) · Zbl 0940.05074  Curtin, B., Almost 2-homogeneous bipartite distance-regular graphs, European J. Combin., 21, 865-876, (2000) · Zbl 1002.05069  Egge, E., A generalization of the Terwilliger algebra, J. Algebra, 233, 213-252, (2000) · Zbl 0960.05108  Go, J., The Terwilliger algebra of the hypercube, European J. Combin., 23, 399-429, (2002) · Zbl 0997.05097  MacLean, M. S.; Terwilliger, P., Taut distance-regular graphs and the subconstituent algebra, Discrete Math., 306, 1694-1721, (2006) · Zbl 1100.05104  MacLean, M. S.; Terwilliger, P., The subconstituent algebra of a bipartite distance-regular graph: thin modules with endpoint two, Discrete Math., 308, 1230-1259, (2008) · Zbl 1136.05076  MacLean, M. S., The local eigenvalues of a bipartite distance-regular graph, European J. Combin., 45, 115-123, (2015) · Zbl 1304.05095  Miklavič, Š., On bipartite Q-polynomial distance-regular graphs, European J. Combin., 28, 94-110, (2007) · Zbl 1200.05262  Nomura, K., Homogeneous graphs and regular near polygons, J. Combin. Theory Ser. B, 60, 63-71, (1994) · Zbl 0793.05130  Terwilliger, P., The subconstituent algebra of an association scheme, part I, J. Algebraic Combin., 1, 363-388, (1992) · Zbl 0785.05089
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.