×

zbMATH — the first resource for mathematics

On response time reduction of electrothermomechanical MEMS using topology optimization. (English) Zbl 1352.74191
Summary: Electrothermomechanical MEMS are essentially microactuators that operate based on the thermoelastic effect induced by the Joule heating of the structure. They can be easily fabricated and require relatively low excitation voltages. However, the actuation time of an electrothermomechanical microdevice is higher than the actuation times related to electrostatic and piezoelectric actuation principles. Thus, in this research, we propose an optimization framework based on the topology optimization method applied to transient problems, to design electrothermomechanical microactuators for response time reduction. The objective is to maximize the integral of the output displacement of the actuator, which is a function of time. The finite element equations that govern the time response of the actuators are provided. Furthermore, the Solid Isotropic Material with Penalization model and Sequential Linear Programming are employed. Finally, a smoothing filter is implemented to control the solution. Results aiming at two distinct applications suggest the proposed approach can provide more than 50% faster actuators.

MSC:
74M05 Control, switches and devices (“smart materials”) in solid mechanics
74F05 Thermal effects in solid mechanics
74F15 Electromagnetic effects in solid mechanics
74P15 Topological methods for optimization problems in solid mechanics
Software:
SUNDIALS
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Sigmund, O., Design of multiphysics actuators using topology optimization - part I: one-material structures, Comput. methods appl. mech. engrg., 190, 6577-6604, (2001) · Zbl 1116.74407
[2] Agarwal, N.; Aluru, N., Stochastic modeling of coupled electromechanical interaction for uncertainty quantification in electrostatically actuated mems, Comput. methods appl. mech. engrg., 197, 43-44, 3456-3471, (2008) · Zbl 1194.78062
[3] Saitou, K.; Wang, D.A.; Wou, S.J.J., Externally resonated linear microvibromotor for microassembly, J. microelectromech. syst., 9, 3, 336-346, (2000)
[4] Auricchio, F.; Taylor, R.L.; Lubliner, J., Shape-memory alloys: macromodelling and numerical simulations of the superelastic behavior, Comput. methods appl. mech. engrg., 146, 3-4, 281-312, (1997) · Zbl 0898.73019
[5] Jonsmann, J.; Sigmund, O.; Bouwstra, S., Compliant thermal microactuators, Sens. actuators A, 76, 1-3, 463-469, (1999)
[6] Sardan, O.; Eichhorn, V.; Fatikow, S.; Petersen, D.H.; Sigmund, O.; Bøggild, P., Rapid prototyping of nanotube-based devices using topology-optimized microgrippers, Nanotechnology, 19, 1-9, (2008)
[7] Comtois, J.H.; Bright, V.M., Applications for surface-micromachined polysilicon thermal actuators and arrays, Sens. actuators A, 58, 19-25, (1997)
[8] Park, J.S.; Chu, L.L.; Oliver, A.D.; Gianchandani, Y.B., Bent-beam electrothermal actuators - part II: linear and rotary microengines, J. microelectromech. syst., 10, 255-262, (2001)
[9] Yin, L.; Ananthasuresh, G.K., A novel topology optimization design scheme for the multi-physics problems of electro-thermally actuated compliant micromechanisms, Sens. actuators A, 97-98, 599-609, (2002)
[10] Sigmund, O., Design of multiphysics actuators using topology optimization - part II: two-material structures, Comput. methods appl. mech. engrg., 190, 6605-6627, (2001) · Zbl 1116.74407
[11] Rubio, W.M.; Silva, E.C.N.; Bordatchev, E.V.; Zeman, M.J.F., Topology optimized design, microfabrication and characterization of electro-thermally driven microgripper, J. intell. mater. syst. struct., 20, 669-681, (2009)
[12] Li, Y.; Saitou, K.; Kikuchi, N., Topology optimization of thermally actuated compliant mechanisms considering time-transient effect, Finite elem. anal. des., 40, 1317-1331, (2004)
[13] Hughes, T.J.R., The finite element method, (1987), Prentice-Hall New York
[14] Bendse, M.P.; Sigmund, O., Topology optimization, (2003), Springer Berlin
[15] Cook, R.D.; Malkus, D.S.; Plesha, M.E.; Witt, R.J., Concepts and applications of finite element analysis, (2002), John Wiley & Sons. Inc.
[16] Vanderplaats, G.N., Numerical optimization techniques for engineering design: with applications, (1984), McGraw-Hill New York, EUA · Zbl 0613.90062
[17] Bruns, T.E.; Tortorelli, D.A., Topology optimization of non-linear elastic structures and compliant mechanisms, Comput. methods appl. mech. engrg., 190, 3443-3459, (2001) · Zbl 1014.74057
[18] Haftka, R.T.; Gurdal, Z.; Kamat, M.P., Elements of structural optimization, (1990), Kluwer Academic Publishers · Zbl 0702.73047
[19] Dahl, J.; Jensen, J.S.; Sigmund, O., Topology optimization for transient wave propagation problems in one dimension, Struct. multi. optim., 36, 585-595, (2008) · Zbl 1273.74145
[20] Wang, F.; Lazarov, B.S.; Sigmund, O., On projection methods, convergence and robust formulations in topology optimization, Struct. multi. optim., 43, 767-784, (2011) · Zbl 1274.74409
[21] Bathe, K.J., Finite element procedures, (1996), Prentice Hall New Jersey · Zbl 0511.73065
[22] Hindmarsh, A.C.; Brown, P.N.; Grant, K.E.; Lee, S.L.; Serban, R.; Shumaker, D.E.; Woodward, C.S., SUNDIALS: suite of nonlinear and differential/algebraic equation solvers, ACM trans. math. softw., 31, 363-396, (2005) · Zbl 1136.65329
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.