×

zbMATH — the first resource for mathematics

Multiscale finite element coarse spaces for the application to linear elasticity. (English) Zbl 1352.74331
Summary: We extend the multiscale finite element method (MsFEM) as formulated by T. Y. Hou and X.-H. Wu, J. Comput. Phys. 134, No. 1, 169–189 (1997; Zbl 0880.73065)] to the PDE system of linear elasticity. The application, motivated by the multiscale analysis of highly heterogeneous composite materials, is twofold. Resolving the heterogeneities on the finest scale, we utilize the linear MsFEM basis for the construction of robust coarse spaces in the context of two-level overlapping domain decomposition preconditioners. We motivate and explain the construction and show that the constructed multiscale coarse space contains all the rigid body modes. Under the assumption that the material jumps are isolated, that is they occur only in the interior of the coarse grid elements, our numerical experiments show uniform convergence rates independent of the contrast in Young’s modulus within the heterogeneous material. Elsewise, if no restrictions on the position of the high coefficient inclusions are imposed, robustness cannot be guaranteed any more. These results justify expectations to obtain coefficient-explicit condition number bounds for the PDE system of linear elasticity similar to existing ones for scalar elliptic PDEs as given in the work of Graham, Lechner and Scheichl [I. G. Graham et al., Numer. Math. 106, No. 4, 589–626 (2007; Zbl 1141.65084)]. Furthermore, we numerically observe the properties of the MsFEM coarse space for linear elasticity in an upscaling framework. Therefore, we present experimental results showing the approximation errors of the multiscale coarse space w.r.t. the fine-scale solution.

MSC:
74S05 Finite element methods applied to problems in solid mechanics
74B05 Classical linear elasticity
65N55 Multigrid methods; domain decomposition for boundary value problems involving PDEs
35R05 PDEs with low regular coefficients and/or low regular data
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Baker A.H., Kolev Tz.V., Yang U.M., Improving algebraic multigrid interpolation operators for linear elasticity problems, Numer. Linear Algebra Appl., 2010, 17(2-3), 495-517 · Zbl 1240.74027
[2] Braess D., Finite Elements, 3rd ed., Cambridge University Press, Cambridge, 2007 http://dx.doi.org/10.1017/CBO9780511618635 · Zbl 1180.65146
[3] Brezzi F., Fortin M., Mixed and Hybrid Finite Element Methods, Springer Ser. Comput. Math., 15, Springer, New York, 1991 · Zbl 0788.73002
[4] Chu C.-C., Graham I.G., Hou T.-Y., A new multiscale finite element method for high-contrast elliptic interface problems, Math. Comp., 2010, 79(272), 1915-1955 http://dx.doi.org/10.1090/S0025-5718-2010-02372-5 · Zbl 1202.65154
[5] Clees T., AMG Strategies for PDE Systems with Applications in Industrial Semiconductor Simulation, PhD thesis, Universität zu Köln, 2005, available at http://www.scai.fraunhofer.de/fileadmin/download/samg/paper/Clees_Diss.pdf
[6] Clément Ph., Approximation by finite element functions using local regularization, RAIRO Anal. Numér., 1975, R-2, 77-84
[7] Durlofsky L.J., Efendiev Y., Ginting V., An adaptive local-global multiscale finite volume element method for twophase flow simulations, Adv. in Water Res., 2007, 30(3), 576-588 http://dx.doi.org/10.1016/j.advwatres.2006.04.002
[8] Efendiev Y., Hou T.Y., Multiscale Finite Element Methods, Surv. Tutor. Appl. Math. Sci., 4, Springer, New York, 2009 · Zbl 1163.65080
[9] Efendiev Y., Galvis J., Lazarov R., Willems J., Robust domain decomposition preconditioners for abstract symmetric positive definite bilinear forms, ESAIM Math. Model. Numer. Anal., 2012, 46(5), 1175-1199 http://dx.doi.org/10.1051/m2an/2011073 · Zbl 1272.65098
[10] Falk R.S., Nonconforming finite element methods for the equations of linear elasticity, Math. Comp., 1991, 57(196), 529-550 http://dx.doi.org/10.1090/S0025-5718-1991-1094947-6 · Zbl 0747.73044
[11] Galvis J., Efendiev Y., Domain decomposition preconditioners for multiscale flows in high-contrast media, Multiscale Model. Simul., 2010, 8(4), 1461-1483 http://dx.doi.org/10.1137/090751190 · Zbl 1206.76042
[12] Galvis J., Efendiev Y., Domain decomposition preconditioners for multiscale flows in high contrast media: reduced dimension coarse spaces, Multiscale Model. Simul., 2010, 8(5), 1621-1644 http://dx.doi.org/10.1137/100790112 · Zbl 1381.65029
[13] Graham I.G., Lechner P.O., Scheichl R., Domain decomposition for multiscale PDEs, Numer. Math., 2007, 106(4), 589-626 http://dx.doi.org/10.1007/s00211-007-0074-1 · Zbl 1141.65084
[14] Graham I.G., Scheichl R., Robust domain decomposition algorithms for multiscale PDEs, Numer. Methods Partial Differential Equations, 2007, 23(4), 859-878 http://dx.doi.org/10.1002/num.20254 · Zbl 1141.65085
[15] Hou T.Y., Wu X.-H., A multiscale finite element method for elliptic problems in composite materials and porous media, J. Comput. Phys., 1997, 134(1), 169-189 http://dx.doi.org/10.1006/jcph.1997.5682
[16] Hou T.Y., Wu X.-H., A multiscale finite element method for PDEs with oscillatory coefficients, In: Numerical Treatment of Multi-Scale Problems, Kiel, January 24-26, 1997, Notes Numer. Fluid Mech., 70, Friedrich Vieweg & Sohn, Braunschweig, 1999, 58-69
[17] Hou T.Y., Wu X.-H., Cai Z., Convergence of a multiscale finite element method for elliptic problems with rapidly oscillating coefficients, Math. Comp., 1999, 68(227), 913-943 http://dx.doi.org/10.1090/S0025-5718-99-01077-7 · Zbl 0922.65071
[18] Hughes T.J.R., The Finite Element Method, Prentice Hall, Englewood Cliffs, 1987 · Zbl 0634.73056
[19] Iliev O., Lazarov R., Willems J., Variational multiscale finite element method for flows in highly porous media, Multiscale Model. Simul., 2011, 9(4), 1350-1372 http://dx.doi.org/10.1137/10079940X · Zbl 1244.76024
[20] Janka A., Algebraic domain decomposition solver for linear elasticity, In: Programs and Algorithms of Numerical Mathematics, Kořenov, June 8-12, 1998, Appl. Math., 1999, 44(6), 435-458 · Zbl 1060.74628
[21] Karer E., Subspace Correction Methods for Linear Elasticity, PhD thesis, Universität Linz, 2011
[22] Karer E., Kraus J.K., Algebraic multigrid for finite element elasticity equations: determination of nodal dependence via edge-matrices and two-level convergence, Internat. J. Numer. Methods Engrg., 2010, 83(5), 642-670 · Zbl 1197.74181
[23] Kolev T., Margenov S., AMLI preconditioning of pure displacement non-conforming elasticity FEM systems, In: Numerical Analysis and its Applications, Rousse, 2000, Lecture Notes in Comput. Sci., 1988, Springer, Berlin, 2001, 482-489 http://dx.doi.org/10.1007/3-540-45262-1_56 · Zbl 1011.74072
[24] Kraus J.K., Algebraic multigrid based on computational molecules, 2: Linear elasticity problems, SIAM J. Sci. Comput., 2008, 30(1), 505-524 http://dx.doi.org/10.1137/050641156 · Zbl 1253.65043
[25] Kraus J., Margenov S., Robust Algebraic Multilevel Methods and Algorithms, Radon Ser. Comput. Appl. Math., 5, De Gruyter, Berlin, 2009 http://dx.doi.org/10.1515/9783110214833 · Zbl 1184.65113
[26] Kraus J.K., Schicho J., Algebraic multigrid based on computational molecules, 1: scalar elliptic problems, Computing, 2006, 77(1), 57-75 http://dx.doi.org/10.1007/s00607-005-0147-x · Zbl 1088.65109
[27] Mandel J., Brezina M., Vaněk P., Energy optimization of algebraic multigrid bases, Computing, 1999, 62(3), 205-228 http://dx.doi.org/10.1007/s006070050022 · Zbl 0942.65034
[28] Millward R., A New Adaptive Multiscale Finite Element Method with Applications to High Contrast Interface Problems, PhD thesis, University of Bath, 2011, available at http://opus.bath.ac.uk/27851/
[29] Saad Y., Iterative Methods for Sparse Linear Systems, 2nd ed., Society for Industrial and Applied Mathematics, Philadelphia, 2003 http://dx.doi.org/10.1137/1.9780898718003 · Zbl 1031.65046
[30] Sarkis M., Partition of unity coarse spaces: enhanced versions, discontinuous coefficients and applications to elasticity, In: Domain Decomposition Methods in Science and Engineering, Cocoyoc, January 6-12, 2002, UNAM, México D.F., 2003, 149-158, available at http://www.ddm.org/DD14/dd14_proceedings.pdf
[31] Schulz V., Andrä H., Schmidt K., Robuste Netzgenerierung zur µFE-Analyse mikrostrukturierter Materialien, NAFEMS Magazin, 2007, 7(2), 28-30
[32] Smith B.F., Domain Decomposition Algorithms for the Partial Differential Equations of Linear Elasticity, PhD thesis, New York University, 1990
[33] Spillane N., Dolean V., Hauret P., Nataf F., Pechstein C., Scheichl R., Abstract robust coarse spaces for systems of PDEs via generalized eigenproblems in the overlaps, Universität Linz, 2011, NuMa-Report #2011-07, available at http://www.numa.uni-linz.ac.at/Publications/List/2011/2011-07.pdf · Zbl 1291.65109
[34] Toselli A., Widlund O., Domain Decomposition Methods, Algorithms and Theory, Springer Ser. Comput. Math., 34, Springer, Berlin, 2005 · Zbl 1069.65138
[35] Vanlent J., Scheichl R., Graham I.G., Energy-minimizing coarse spaces for two-level Schwarz methods for multiscale PDEs, Numer. Linear Algebra Appl., 2009, 16(10), 775-799 http://dx.doi.org/10.1002/nla.641 · Zbl 1224.65292
[36] Vaněk P., Acceleration of convergence of a two-level algorithm by smoothing transfer operator, Appl. Math., 1992, 37(4), 265-274
[37] Vaněk P., Fast multigrid solver, Appl. Math., 1995, 40(1), 1-20
[38] Vaněk P., Brezina M., Tezaur R., Two-grid method for linear elasticity on unstructured meshes, SIAM J. Sci. Comput., 1999, 21(3), 900-923 http://dx.doi.org/10.1137/S1064827596297112 · Zbl 0952.65099
[39] Vassilevski P.S., Multilevel Block Factorization Preconditioners, Springer, New York, 2008 · Zbl 1170.65001
[40] Wan W.L., Chan T.F., Smith B., An energy-minimizing interpolation for robust multigrid methods, SIAM J. Sci. Comput., 2000, 21(4), 1632-1649 http://dx.doi.org/10.1137/S1064827598334277 · Zbl 0966.65098
[41] Willems J., Robust multilevel methods for general symmetric positive definite operators, RICAM Institute for Computational and Applied Mathematics, 2012, report #2012-06, available at http://www.ricam.oeaw.ac.at/publications/reports/12/rep12-06.pdf
[42] Xu J., Zikatanov L., On an energy minimizing basis for algebraic multigrid methods, Comput. Vis. Sci., 2004, 7(3-4), 121-127 · Zbl 1077.65130
[43] Zhu Y., Sifakis E., Teran J., Brandt A., An efficient multigrid method for the simulation of high resolution elastic solids, ACM Transactions on Graphics, 2010, 29(2), #16 http://dx.doi.org/10.1145/1731047.1731054
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.