×

zbMATH — the first resource for mathematics

An enhanced Craig-Bampton method. (English) Zbl 1352.74378
Summary: In this paper, we propose a new component mode synthesis method by enhancing the Craig-Bampton (CB) method. To develop the enhanced CB method, the transformation matrix of the CB method is enhanced considering the effect of residual substructural modes and the unknown eigenvalue in the enhanced transformation matrix is approximated by using O’Callahan’s approach in Guyan reduction. Using the newly defined transformation matrix, original finite element models can be more accurately approximated by reduced models. For this reason, the accuracy of the reduced models is significantly improved with a low additional computational cost. We here present the formulation details of the enhanced CB method and demonstrate its performance through several numerical examples.

MSC:
74S05 Finite element methods applied to problems in solid mechanics
65M60 Finite element, Rayleigh-Ritz and Galerkin methods for initial value and initial-boundary value problems involving PDEs
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Hurty, Dynamic analysis of structural systems using component modes, AIAA Journal 3 (4) pp 678– (1965) · doi:10.2514/3.2947
[2] Guyan, Reduction of stiffness and mass matrices, AIAA Journal 3 (2) pp 380– (1965) · doi:10.2514/3.2874
[3] Craig, Coupling of substructures for dynamic analysis, AIAA Journal 6 (7) pp 1313– (1968) · Zbl 0159.56202 · doi:10.2514/3.4741
[4] MacNeal, Hybrid method of component mode synthesis, Computers & Structures 1 (4) pp 581– (1971) · doi:10.1016/0045-7949(71)90031-9
[5] Benfield, Vibration analysis of structures by component mode substitution, AIAA Journal 9 pp 1255– (1971) · Zbl 0214.23802 · doi:10.2514/3.49936
[6] Rubin, Improved component-mode representation for structural dynamic analysis, AIAA Journal 13 (8) pp 995– (1975) · Zbl 0334.70014 · doi:10.2514/3.60497
[7] Hintz, Analytical methods in component modal synthesis, AIAA Journal 13 (8) pp 1007– (1975) · Zbl 0322.73053 · doi:10.2514/3.60498
[8] Bennighof, An automated multilevel substructuring method for eigenspace computation in linear elastodynamics, SIAM Journal on Scientific Computing 25 (6) pp 2084– (2004) · Zbl 1133.65304 · doi:10.1137/S1064827502400650
[9] Park, Partitioned component mode synthesis via a flexibility approach, AIAA Journal 42 (6) pp 1236– (2004) · doi:10.2514/1.10423
[10] Rixen, A dual Craig-Bampton method for dynamic substructuring, Journal of Computational and Applied Mathematics 168 (1-2) pp 383– (2004) · Zbl 1107.70303 · doi:10.1016/j.cam.2003.12.014
[11] Markovic, Reduction of substructural interface degrees of freedom in flexibility-based component mode synthesis, International Journal of Numerical Methods in Engineering 70 pp 163– (2007) · Zbl 1194.74120 · doi:10.1002/nme.1878
[12] Craig RR Coupling of substructures for dynamic analyses: an overview Atlanta, USA 2000 2000 1573
[13] Craig, Fundamentals of Structural Dynamics (2006)
[14] Klerk, General framework for dynamic substructuring: history, review, and classification of techniques, AIAA Journal 46 (5) pp 1169– (2008) · doi:10.2514/1.33274
[15] Kim, Estimating relative eigenvalue errors in the Craig-Bampton method, Computers & Structures 139 pp 54– (2014) · doi:10.1016/j.compstruc.2014.04.008
[16] O’Callahan J Aprocedure for an improved reduced system (IRS) model CT, Bethel 1989 17 21
[17] Friswll, Model reduction using dynamic and iterated IRS techniques, Journal of Sound and Vibration 186 pp 311– (1995) · Zbl 1049.74725 · doi:10.1006/jsvi.1995.0451
[18] Xia, A new iterative order reduction (IOR) method for eigensolutions of large structures, International Journal for Numerical Methods in Engineering 59 (1) pp 153– (2004) · Zbl 1047.74024 · doi:10.1002/nme.876
[19] Park KC Kim JG Lee PS Amode selection criterion based on flexibility approach in component mode synthesis Hawaii, USA 2012 2012 1883
[20] Dvorkin, A continuum mechanics based four-node shell element for general nonlinear analysis, Engineering Computations 1 (1) pp 77– (1984) · doi:10.1108/eb023562
[21] Bathe, A formulation of general shell elements-the use of mixed interpolation of tensorial components, International Journal for Numerical Methods in Engineering 22 (3) pp 697– (1986) · Zbl 0585.73123 · doi:10.1002/nme.1620220312
[22] Lee, The MITC3+ shell finite element and its performance, Computers & Structures 138 pp 12– (2014) · doi:10.1016/j.compstruc.2014.02.005
[23] Jeon, The MITC3 shell finite element enriched by interpolation covers, Computers & Structures 134 pp 128– (2014) · doi:10.1016/j.compstruc.2013.12.003
[24] Hurty W A criterion for selecting realistic natural modes of a structure. Technical Memorandum, Jet Propulsion Laboratory, Pasadena, CA 1967 33 364
[25] Kim, An accurate error estimator for Guyan reduction, Computer Methods in Applied Mechanics and Engineering 279 pp 1– (2014) · Zbl 1423.74897 · doi:10.1016/j.cma.2014.05.002
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.