×

zbMATH — the first resource for mathematics

Crystallographic groups and flat manifolds from complex reflection groups. (English) Zbl 1353.20020
The paper is a generalization of an article by D. L. Gonçsalves, J. Guaschi and O. Ocampo [“Quotients of the Artin braid groups and crystalographic groups”, Preprint, arxiv:1503.04527].
In that paper, the authors proved that the quotient of the braid group \(B_n\) by the commutator subgroup \([P_n, P_n]\) of the pure braid group is a crystallographic group. Morever, they proved that this quotient has no 2-torsion.
The author of the paper under review proves that all the results of the above article can be generalized for the case where the group \(B_n\) is a generalized braid group \(B\) of a (finite) complex reflection group in the sense of an article by M. Broúe et al. [J. Reine Angew. Math. 500, 127–190 (1998; Zbl 0921.20046)]. The author considers the quotient \(B/[P, P]\), where \(P\) is the pure braid group. He proves that this quotient is always a crystallographic group, and that it never contains elements of order 2. Another result is a construction of elements of finite order inside \(B/[P, P]\). In this part, torsion-free examples of Bieberbach groups in the above way are given and the question which one has a Kähler structure is considered.

MSC:
20F36 Braid groups; Artin groups
20F55 Reflection and Coxeter groups (group-theoretic aspects)
20H15 Other geometric groups, including crystallographic groups
PDF BibTeX XML Cite
Full Text: DOI arXiv
References:
[1] Beck, V, Abelianization of subgroups of reflection groups and their braid groups: an application to cohomology, Manuscr. Math., 136, 273-293, (2011) · Zbl 1241.20038
[2] Broué, M; Malle, G; Rouquier, R, Complex reflection groups, braid groups, Hecke algebras, J. Reine Angew. Math., 500, 127-190, (1998) · Zbl 0921.20046
[3] Dekimpe, K.: Almost Bieberbach Groups: Affine and Poynomial Structures. Springer LNM, Berlin (1996) · Zbl 0865.20001
[4] Digne, F.: Présentation des groupes de tresses pures et de certaines de leurs extensions, preprint (1999), arXiv:1511.08731v1 · Zbl 1188.20036
[5] Digne, F; Marin, I; Michel, J, The center of pure complex braid groups, J. Algebra, 347, 206-213, (2011) · Zbl 1241.20039
[6] Gonçalves, D.L., Guaschi, J., Ocampo, O.: Quotients of the Artin braid groups and crystallographic groups, preprint (2015), arXiv:1503.04527v1
[7] Hoffman, M, An invariant of finite abelian groups, Am. Math. Mon., 94, 664-666, (1987) · Zbl 0628.62049
[8] Johnson, FEA; Rees, EG, Kähler groups and rigidity phenomena, Math. Proc. Camb. Phil. Soc., 109, 31-44, (1991) · Zbl 0736.53058
[9] Lehrer, G.I., Taylor, D.E.: Unitary Reflection Groups. Cambridge University Press, Cambridge (2009) · Zbl 1189.20001
[10] Marin, I, Reflection groups acting on their hyperplanes, J. Algebra, 322, 2848-2860, (2009) · Zbl 1188.20036
[11] Orlik, P., Terao, H.: Arrangements of Hyperplanes. Springer, Berlin (1992) · Zbl 0757.55001
[12] Richardson, RW, Conjugacy classes of involutions in Coxeter groups, Bull. Aust. Math. Soc., 26, 1-155, (1982) · Zbl 0531.20017
[13] Springer, TA, Regular elements of finite reflection groups, Invent. Math., 25, 159-198, (1974) · Zbl 0287.20043
[14] Tits, J, Normalisateurs de tores I : groupes de Coxeter étendus, J. Algebra, 4, 96-116, (1966) · Zbl 0145.24703
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.