Contrast between Lagrangian and Eulerian analytic regularity properties of Euler equations. (English) Zbl 1353.35233

Summary: We consider the incompressible Euler equations on \(\mathbb R^d\) or \(\mathbb T^d\), where \(d \in \{2, 3 \}\). We prove that:
In Lagrangian coordinates the equations are locally well-posed in spaces with fixed real-analyticity radius (more generally, a fixed Gevrey-class radius).
In Lagrangian coordinates the equations are locally well-posed in highly anisotropic spaces, e.g. Gevrey-class regularity in the label \(a_1\) and Sobolev regularity in the labels \(a_2, \dots, a_d\).
In Eulerian coordinates both results (a) and (b) above are false.


35Q35 PDEs in connection with fluid mechanics
35Q30 Navier-Stokes equations
76D09 Viscous-inviscid interaction
35B65 Smoothness and regularity of solutions to PDEs
Full Text: DOI arXiv


[1] Bardos, C.; Benachour, S.; Zerner, M., Analycité des solutions périodiques de l’équation d’Euler en deux dimensions, C. R. Acad. Sci. Paris Sér. A-B, 282, A995-A998, (1976)
[2] Bardos, C.; Titi, E. S., Loss of smoothness and energy conserving rough weak solutions for the 3d Euler equations, Discrete Contin. Dyn. Syst., Ser. S, 3, 2, 185-197, (2010) · Zbl 1191.76057
[3] A.L. Cauchy, Sur l’état du fluide à une époque quelconque du mouvement, in: Mémoires extraits des recueils de l’Académie des sciences de l’Institut de France, Théorie de la propagation des ondes à la surface dun fluide pesant dune profondeur indéfinie, Sciences mathématiques et physiques, Tome I, Seconde Partie, 1827.
[4] Chemin, J.-Y., Régularité de la trajectoire des particules d’un fluide parfait incompressible remplissant l’espace, J. Math. Pures Appl. (9), 71, 5, 407-417, (1992) · Zbl 0833.35112
[5] Cheskidov, A.; Shvydkoy, R., Ill-posedness of basic equations of fluid dynamics in Besov spaces, Proc. Am. Math. Soc., 138, 1059-1067, (2010) · Zbl 1423.76085
[6] Constantin, P., An eulerian-Lagrangian approach for incompressible fluids: local theory, J. Am. Math. Soc., 14, 2, 263-278, (2001), (electronic) · Zbl 0997.76009
[7] Constantin, P.; Vicol, V.; Wu, J., Analyticity of Lagrangian trajectories for well posed inviscid incompressible fluid models, (2014)
[8] DiPerna, R. J.; Majda, A. J., Oscillations and concentrations in weak solutions of the incompressible fluid equations, Commun. Math. Phys., 108, 4, 667-689, (1987) · Zbl 0626.35059
[9] Euler, L., Principes généraux du mouvement des fluides, Académie Royale des Sciences et des Belles Lettres de Berlin, Mémoires, 11, 274-315, (1757)
[10] Frisch, U.; Zheligovsky, V., A very smooth ride in a rough sea, Commun. Math. Phys., 326, 2, 499-505, (2014) · Zbl 1285.35072
[11] Himonas, A.; Alexandrou, A.; Misiolek, G., Non-uniform dependence on initial data of solutions to the Euler equations of hydrodynamics, Commun. Math. Phys., 296, 1, 285-301, (2010) · Zbl 1195.35247
[12] Gamblin, P., Système d’Euler incompressible et régularité microlocale analytique, Ann. Inst. Fourier (Grenoble), 44, 5, 1449-1475, (1994) · Zbl 0820.35111
[13] Glass, O.; Sueur, F.; Takahashi, T., Smoothness of the motion of a rigid body immersed in an incompressible perfect fluid, Ann. Sci. Éc. Norm. Supér. (4), 45, 1, 1-51, (2012) · Zbl 1311.35217
[14] Kukavica, I.; Vicol, V., The domain of analyticity of solutions to the three-dimensional Euler equations in a half space, Discrete Contin. Dyn. Syst., 29, 1, 285-303, (2011) · Zbl 1308.35192
[15] Kukavica, I.; Vicol, V., On the analyticity and Gevrey-class regularity up to the boundary for the Euler equations, Nonlinearity, 24, 3, 765-796, (2011) · Zbl 1213.35345
[16] Misiolek, G.; Yoneda, T., Ill-posedness examples for the quasi-geostrophic and the Euler equations, (Analysis, Geometry and Quantum Field Theory, Contemp. Math., vol. 584, (2012), Amer. Math. Soc.), 251-258 · Zbl 1317.35265
[17] Misiolek, G.; Yoneda, T., Loss of continuity of the solution map for the Euler equations in α-modulation and hl̈der spaces, (2014)
[18] Nadirashvili, N., On stationary solutions of two-dimensional Euler equation, Arch. Ration. Mech. Anal., 209, 3, 729-745, (2013) · Zbl 1287.35062
[19] Serfati, P., Structures holomorphes à faible régularité spatiale en mécanique des fluides, J. Math. Pures Appl., 74, 2, 95-104, (1995) · Zbl 0849.35111
[20] Shnirelman, A., On the analyticity of particle trajectories in the ideal incompressible fluid, (2012) · Zbl 1296.35133
[21] A. Shnirelman, Personal communication, 2015.
[22] Sueur, F., Smoothness of the trajectories of ideal fluid particles with yudovich vorticities in a planar bounded domain, J. Differ. Equ., 251, 12, 3421-3449, (2011) · Zbl 1248.76011
[23] Weber, H. M., Über eine transformation der hydrodynamischen gleichungen, J. Reine Angew. Math. (Crelle), 68, 286-292, (1868)
[24] Zheligovsky, V.; Frisch, U., Time-analyticity of Lagrangian particle trajectories in ideal fluid flow, J. Fluid Mech., 749, 404-430, (2014) · Zbl 1325.76018
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.