×

Nonlocal diffusion second order partial differential equations. (English) Zbl 1353.35297

The paper deals with the second order integro-differential equation \[ u_{tt}=c u_t+bu(t,\xi)+u(t,\xi)\int_\Omega k(\xi,\eta)u(t,\eta)d\eta +h(t,u(t,\xi)), \] where \(\Omega\subset\mathbb{R}^n,\) \(n\geq2,\) is a \(C^1\)-smooth and bounded domain, \(b\) and \(c\) are constants and \(k: \Omega\times \Omega\to\mathbb{R},\) \(h: [0,T]\times\mathbb{R}\to\mathbb{R}\) are given functions.
Under suitable conditions on the data, the authors prove existence of solutions to the above equation under various conditions such as the periodic ones \[ u(0,\xi)=u(T,\xi),\;u_t(0,\xi)=u_t(T,\xi), \] the Cauchy multipoint \[ u(0,\xi)=\sum_{i=1}^k \alpha_i u(t_i,\xi),\;u(T,\xi)=\sum_{i=1}^k \beta_i u(t_i,\xi), \] and the weighted mean value conditions \[ u(0,\xi)=\dfrac{1}{T}\int_0^T p_1(t)u(t,\xi)dt,\;u(T,\xi)=\dfrac{1}{T}\int_0^T p_2(t)u(t,\xi)dt. \] The approach relies on reducing the problem to an abstract setting and application of suitable approximation solvability methods, based on Schauder degree arguments, Hartman-type inequality and Scorza-Dragoni results. The solutions are located in bounded sets and result limits of functions with values in finite dimensional spaces.

MSC:

35R09 Integro-partial differential equations
34B10 Nonlocal and multipoint boundary value problems for ordinary differential equations
34C25 Periodic solutions to ordinary differential equations
47H11 Degree theory for nonlinear operators
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Agarwal, R. P.; Chen, J.; O’Regan, D., Periodic solutions for a resonant system of coupled telegraph-wave equations, Dyn. Contin. Discrete Impuls. Syst. Ser. B, 15, 891-902 (2008) · Zbl 1198.35145
[2] Andres, J.; Gorniewicz, L., Topological Fixed Point Principles for Boundary Value Problems (2003), Kluwer Academic Publishers: Kluwer Academic Publishers Dordrecht · Zbl 1029.55002
[3] Andres, J.; Malaguti, L.; Pavlačková, M., Hartman-type conditions for multivalued Dirichlet problems in abstract spaces, (Discr. Cont. Dyn. Syst., 10th AIMS Conf. Suppl. (2015)), 103-111
[4] Barbu, V., Nonlinear Semigroups and Differential Equations in Banach Spaces (1976), Noordhoff International Publishing: Noordhoff International Publishing Leyden · Zbl 0328.47035
[5] Benedetti, I.; Loi, N.; Malaguti, L.; Obukhovskii, V., An approximation solvability method for nonlocal differential problems in Hilbert spaces, Commun. Contemp. Math. (2016), 34 pp
[6] Benedetti, I.; Malaguti, L.; Taddei, V., Nonlocal semilinear evolution equations without strong compactness: theory and applications, Bound. Value Probl., 2013, 60, 1-18 (2013) · Zbl 1288.34056
[7] Benedetti, I.; Taddei, V.; Väth, M., Evolution problems with nonlinear nonlocal boundary conditions, J. Dynam. Differential Equations, 25, 2, 477-503 (2013) · Zbl 1281.34108
[8] Bochner, S.; Taylor, A. E., Linear functionals on certain spaces of abstractly-valued functions, Ann. of Math., 39, 913-944 (1938) · Zbl 0020.37101
[9] Carrillo, J. A.; Vazquez, J. L., Some free boundary problems involving non-local diffusion and aggregation, Philos. Trans. R. Soc. Ser. A, 373, 2050 (2015), 16 pp · Zbl 1353.35320
[10] De Araujo, G. M.; Guzman, R. B.; De Menezes, S. B., Periodic solutions for nonlinear telegraph equation via elliptic regularization, Comput. Appl. Math., 28, 2, 135-155 (2009) · Zbl 1180.35043
[11] Diestel, J.; Ruess, W. M.; Schachermayer, W., Weak compactness in \(L^1(\mu, X)\), Proc. Amer. Math. Soc., 118, 447-453 (1993) · Zbl 0785.46037
[12] Gilding, B. H.; Kersner, R., The characterization of reaction-convection-diffusion processes by travelling waves, J. Differential Equations, 124, 27-79 (1996) · Zbl 0840.35051
[13] Hu, S.; Papageorgiou, N. S., Handbook of Multivalued Analysis, vol. I: Theory, Mathematics and Its Applications, vol. 419 (1997), Kluwer Academic Publishers: Kluwer Academic Publishers Dordrecht · Zbl 0887.47001
[14] Hutson, V.; Shen, W.; Vickers, G. T., Spectral theory for nonlocal dispersal with periodic or almost-periodic time dependence, Rocky Mountain J. Math., 38, 1147-1175 (2008) · Zbl 1255.47075
[15] Jang, T. S., A new solution procedure for the nonlinear telegraph equation, Commun. Nonlinear Sci. Numer. Simul., 29, 307-326 (2015) · Zbl 1510.65278
[16] Jin, Y.; Zhao, X. Q., Spatial dynamics of a periodic population model with dispersal, Nonlinearity, 22, 1167-1189 (2009) · Zbl 1161.92047
[17] Kmit, I., Fredholm solvability of a periodic Neumann problem for a linear telegraph equation, Ukrainian Math. J., 65, 3, 423-434 (2013) · Zbl 1286.35150
[18] Li, W.; Zhang, H., Positive doubly periodic solutions of telegraph equations with delays, Bound. Value Probl., 2015 (2015), 12 pp · Zbl 1338.35025
[19] Malaguti, L.; Rubbioni, P., Nonsmooth feedback controls of nonlocal dispersal models, Nonlinearity, 29, 823-850 (2016) · Zbl 1351.92043
[20] McKibben, M., Discovering Evolution Equations with Applications, vol. 1 (2011), CRC Press · Zbl 1362.35001
[21] Schmitt, K.; Thompson, R. C., Boundary value problems for infinite systems of second-order differential equations, J. Differential Equations, 18, 277-295 (1975) · Zbl 0302.34081
[22] Paicu, A.; Vrabie, I. I., A class of nonlinear evolution equations subjected to nonlocal initial conditions, Nonlinear Anal., 72, 4091-4100 (2010) · Zbl 1200.34068
[23] Rashidinia, J.; Mohammadi, R., Tension spline approach for the numerical solution of nonlinear Klein-Gordon equation, Comput. Phys. Commun., 181, 78-91 (2010) · Zbl 1210.65177
[24] Samia, Y.; Lutscher, F., Coexistence and spread of competitors in heterogeneous landscapes, Bull. Math. Biol., 72, 8, 2089-2112 (2010) · Zbl 1201.92063
[25] Yuan, W.; Xiong, W.; Lin, J.; Wu, Y., All meromorphic solutions of an auxiliary ordinary differential equation and its applications, Acta Math. Sci. Ser. B, 35, 5, 1241-1250 (2015) · Zbl 1349.34380
[26] Wang, F.; An, Y., Existence and multiplicity results of positive doubly periodic solutions for nonlinear telegraph system, J. Math. Anal. Appl., 349, 30-42 (2009) · Zbl 1159.35011
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.