×

Bifurcation of lunisolar secular resonances for space debris orbits. (English) Zbl 1353.37158

Summary: Using bifurcation theory, we study the secular resonances induced by the Sun and Moon on space debris orbits around the Earth. In particular, we concentrate on a special class of secular resonances, which depend only on the debris’ orbital inclination. This class is typically subdivided into three distinct types of secular resonances: those occurring at the critical inclination, those corresponding to polar orbits, and a third type resulting from a linear combination of the rates of variation of the argument of perigee and the longitude of the ascending node. The model describing the dynamics of space debris includes the effects of the geopotential, as well as the Sun’s and Moon’s attractions, and it is defined in terms of suitable action-angle variables. We consider the system averaged over both the mean anomaly of the debris and those of the Sun and Moon. Such a multiply-averaged Hamiltonian is used to study the lunisolar resonances which depend just on the inclination. Borrowing the technique from the theory of bifurcations of Hamiltonian normal forms, we study the birth of periodic orbits and determine the energy thresholds at which the bifurcations of lunisolar secular resonances take place. This approach gives us physically relevant information on the existence and location of the equilibria, which help us to identify stable and unstable regions in the phase space. Besides their physical interest, the study of inclination dependent resonances offers interesting insights from the dynamical point of view, since it sheds light on different phenomena related to bifurcation theory.

MSC:

37N05 Dynamical systems in classical and celestial mechanics
70F15 Celestial mechanics
37J20 Bifurcation problems for finite-dimensional Hamiltonian and Lagrangian systems
PDFBibTeX XMLCite
Full Text: DOI arXiv

References:

[1] V.I. Arnold, {\it Proof of a theorem of A. N. Kolmogorov on the invariance of quasi-periodic motions under small perturbations}, Russian Math. Surveys, 18 (1963), pp. 9-36.
[2] V.I. Arnold, {\it Instability of dynamical systems with several degrees of freedom}, Sov. Math. Doklady, 5 (1964), pp. 581-585. · Zbl 0135.42602
[3] S. Belyanin and P. Gurfil, {\it Semianalytical study of geosynchronous orbits about a precessing oblate Earth under lunisolar gravitation and tesseral resonance}, J. Astronaut. Sci., 57 (2009), pp. 517-543.
[4] S. Breiter, {\it Lunisolar apsidal resonances at low satellite orbits}, Celestial Mech. Dynam. Astronom., 74 (1999), pp. 253-274. · Zbl 0956.70019
[5] S. Breiter, {\it On the coupling of lunisolar resonances for Earth satellite orbits}, Celestial Mech. Dynam. Astronom., 80 (2001), pp. 1-20. · Zbl 1010.70021
[6] S. Breiter, {\it Lunisolar resonances revisited}, Celestial Mech. Dynam. Astronom., 81 (2001), pp. 81-91. · Zbl 1043.70009
[7] A. Celletti, {\it Stability and Chaos in Celestial Mechanics}, Springer, Berlin, 2010. · Zbl 1203.70001
[8] A. Celletti and C. Galeş, {\it On the dynamics of space debris: 1:1 and 2:1 resonances}, J. Nonlinear Sci., 24 (2014), pp. 1231-1262. · Zbl 1302.70036
[9] A. Celletti and C. Galeş, {\it Dynamical investigation of minor resonances for space debris}, Celestial Mech. Dynam. Astronom., 123 (2015), pp. 203-222. · Zbl 1428.70026
[10] A. Celletti, C. Galeş, G. Pucacco, and A. Rosengren, {\it Analytical Development of the Lunisolar Disturbing Function and the Critical Inclination Secular Resonance}, arXiv:1511.03567v2, 2015. · Zbl 1374.70029
[11] A. Celletti, G. Pucacco, and D. Stella, {\it Lissajous and Halo Orbits in the Restricted Three-Body Problem}, J. Nonlinear Sci., 25 (2015), pp. 343-370. · Zbl 1344.70022
[12] C.C. Chao, {\it Applied Orbit Perturbation and Maintenance}, Aerospace Press Ser., AIAA, Reston, VA, 2005.
[13] C.C. Chao and R.A. Gick, {\it Long-term evolution of navigation satellite orbits: GPS/GLONASS/ GALILEO}, Adv. Space Res., 34 (2004), pp. 1221-1226.
[14] S.L. Coffey, A. Deprit, and B.R. Miller, {\it The critical inclination in artificial satellite theory}, Celestial Mech., 39 (1986), pp. 365-406. · Zbl 0645.70018
[15] S.L. Coffey, A. Deprit, E. Deprit, and L. Healey, {\it Painting the phase space portrait of an integrable dynamical system}, Science, 247 (1989), pp. 833-836. · Zbl 1226.37053
[16] J. Daquin, A.J. Rosengren, E.M. Alessi, F. Deleflie, G.B. Valsecchi, and A. Rossi, {\it The dynamical structure of the MEO region: Long-term stability, chaos, and transport}, Celestial Mech. Dynam. Astronom., 124 (2016), pp. 335-366. · Zbl 1336.70040
[17] F. Deleflie, A. Rossi, C. Portmann, G. Me´tris, and F. Barlier, {\it Semi-analytical investigations of the long term evolution of the eccentricity of Galileo and GPS-like orbits}, Adv. Space Res., 47 (2011), pp. 811-821.
[18] A. Delshams, R. de la Llave, and T.M. Seara, {\it A geometric approach to the existence of orbits with unbounded energy in generic periodic perturbations by a potential of generic geodesic flows of \({\bf T}^2\)}, Comm. Math. Phys., 209 (2000), pp. 353-392. · Zbl 0952.70015
[19] A. Delshams, R. de la Llave, and T.M. Seara, {\it Geometric properties of the scattering map of a normally hyperbolic invariant manifold}, Adv. Math., 217 (2008), pp. 1096-1153. · Zbl 1131.37032
[20] T.A. Ely and K.C. Howell, {\it Dynamics of artificial satellite orbits with tesseral resonances including the effects of luni-solar perturbations}, Dynam. Stab. Syst., 12 (1997), pp. 243-269. · Zbl 0943.70017
[21] N. Fenichel, {\it Persistence and smoothness of invariant manifolds for flows}, Indiana Univ. Math. J., 21 (1971-1972), pp. 193-226. · Zbl 0246.58015
[22] N. Fenichel, {\it Asymptotic stability with rate conditions}, Indiana Univ. Math. J., 23 (1973-1974), pp. 1109-1137. · Zbl 0284.58008
[23] C. Froeschlé, E. Lega, and R. Gonczi, {\it Fast Lyapunov indicators. Application to asteroidal motion}, Celestial Mech. Dynam. Astronom., 67 (1997), pp. 41-62. · Zbl 0892.70008
[24] G.E.O. Giacaglia, {\it Lunar perturbations of artificial satellites of the Earth}, Celestial Mech., 9 (1974), pp. 239-267. · Zbl 0343.70019
[25] G.E.O. Giacaglia, {\it A note on Hansen’s coefficients in satellite theory}, Celestial Mech., 14 (1976), pp. 515-523. · Zbl 0365.70027
[26] J. Henrard and A. Lema\^\itre, {\it A second fundamental model for resonance}, Celestial Mech., 30 (1983), pp. 197-218. · Zbl 0513.70012
[27] M.W. Hirsch, C.C. Pugh, and M. Shub, {\it Invariant Manifolds}, Lecture Notes in Math. 583, Springer, Berlin, 1977. · Zbl 0355.58009
[28] P.H. Holmes and J.E. Marsden, {\it Melnikov’s method and Arnold diffusion for perturbations of integrable Hamiltonian systems}, J. Math. Phys., 23 (1982), pp. 669-675. · Zbl 0497.70025
[29] S. Hughes, {\it Earth satellite orbits with resonant lunisolar perturbations. I. Resonances dependent only on inclination}, Proc. Roy. Soc. Lond. A, 372 (1980), pp. 243-264.
[30] S. Hughes, {\it Earth satellite orbits with resonant lunisolar pertubations II. Some resonances dependent on the semi-major axis, eccentricity and inclination}, Proc. Roy. Soc. Lond. A, 375 (1981), pp. 379-396.
[31] W.M. Kaula, {\it Developement of the lunar and solar disturbing functions for a close satellite}, Astronom. J., 67 (1962), pp. 300-303.
[32] W.M. Kaula, {\it Theory of Satellite Geodesy}, Blaisdell, New York, 1966. · Zbl 0973.86001
[33] A.N. Kolmogorov, {\it On conservation of conditionally periodic motions for a small change in Hamilton’s function}, Dokl. Akad. Nauk SSSR (N.S.), 98 (1954), pp. 527-530. · Zbl 0056.31502
[34] M.T. Lane, {\it On analytic modeling of lunar perturbations of artifical satellites of the Earth}, Celestial Mech. Dynam. Astronom., 46 (1989), pp. 287-305. · Zbl 0682.70025
[35] A. Lema\^\itre, {\it High-order resonances in the restricted three-body problem}, Celestial Mech., 32 (1984), pp. 109-126. · Zbl 0591.70025
[36] A. Lema\^\itre, N. Delsate, and S. Valk, {\it A web of secondary resonances for large \(A/m\) geostationary debris}, Celestial Mech. Dynam. Astronom., 104 (2009), pp. 383-402. · Zbl 1204.70024
[37] J. Moser, {\it On invariant curves of area-preserving mappings of an annulus}, Nachr. Akad. Wiss. Göttingen Math. Phys. Kl. II, Vandenhoeck & Ruprecht, Göttingen, Germany, 1962, pp. 1-20. · Zbl 0107.29301
[38] C.D. Murray and S.F Dermott, {\it Solar System Dynamics}, Cambridge University Press, Cambridge, 1999. · Zbl 0957.70002
[39] Y.B. Pesin, {\it Lectures on Partial Hyperbolicity and Stable Ergodicity}, Zürich Lect. Adv. Math., European Mathematical Society (EMS), Zürich, 2004. · Zbl 1098.37024
[40] A. Marchesiello and G. Pucacco, {\it Relevance of the 1:1 resonance in galactic dynamics}, Eur. Phys. J. Plus, 126 (2011), pp. 104-118.
[41] A. Marchesiello and G. Pucacco, {\it Equivariant singularity analysis of the 2:2 resonance}, Nonlinearity, 27 (2014), pp. 43-66. · Zbl 1418.37091
[42] G. Pucacco and A. Marchesiello, {\it An energy-momentum map for the time-reversal symmetric 1:1 resonance with \({\mathbb Z}_2×{\mathbb Z}_2\) symmetry}, Phys. D, 271 (2014), pp. 10-18. · Zbl 1356.37066
[43] A.J. Rosengren, E.M. Alessi, A. Rossi, and G.B. Valsecchi, {\it Chaos in navigation satellite orbits caused by the perturbed motion of the Moon}, Monthly Notices Roy. Astronom. Soc., 449 (2015), pp. 3522-3526.
[44] A. Rossi, {\it Resonant dynamics of Medium Earth Orbits: Space debris issues}, Celestial Mech. Dynam. Astronom., 100 (2008), pp. 267-286. · Zbl 1254.70041
[45] J.L. Simon, P. Bretagnon, J. Chapront, M, Chapront-Touzé, G. Francou, and J. Laskar, {\it Numerical expressions for precession formulae and mean elements for the Moon and the planets}, Astron. Astrophys., 282 (1994), pp. 663-683.
[46] S. Valk and A. Lema\^\itre, {\it Analytical and semi-analytical investigations of geosynchronous space debris with high area-to-mass ratios}, Adv. Space Res., 41 (2008), pp. 1077-1090.
[47] S. Valk, A. Lema\^\itre, and F. Deleflie, {\it Semi-analytical theory of mean orbital motion for geosynchronous space debris under gravitational influence}, Adv. Space Res., 43 (2009), pp. 1070-1082.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.