×

zbMATH — the first resource for mathematics

A sparse grid discontinuous Galerkin method for high-dimensional transport equations and its application to kinetic simulations. (English) Zbl 1353.82064

MSC:
82C70 Transport processes in time-dependent statistical mechanics
65M60 Finite element, Rayleigh-Ritz and Galerkin methods for initial value and initial-boundary value problems involving PDEs
35Q20 Boltzmann equations
35Q83 Vlasov equations
PDF BibTeX Cite
Full Text: DOI arXiv
References:
[1] B. K. Alpert, A class of bases in \(L^2\) for the sparse representation of integral operators, SIAM J. Math. Anal., 24 (1993), pp. 246–262, . · Zbl 0764.42017
[2] D. N. Arnold, An interior penalty finite element method with discontinuous elements, SIAM J. Numer. Anal., 19 (1982), pp. 742–760, . · Zbl 0482.65060
[3] B. Ayuso, J. A. Carrillo, and C.-W. Shu, Discontinuous Galerkin methods for the one-dimensional Vlasov-Poisson system, Kinet. Relat. Models, 4 (2011), pp. 955–989, . · Zbl 1252.65157
[4] R. Bellman, Adaptive Control Processes: A Guided Tour, Vol. 4, Princeton University Press, Princeton, NJ, 1961. · Zbl 0103.12901
[5] N. Besse, G. Latu, A. Ghizzo, E. Sonnendrücker, and P. Bertrand, A wavelet-MRA-based adaptive semi-Lagrangian method for the relativistic Vlasov-Maxwell system, J. Comput. Phys., 227 (2008), pp. 7889–7916, . · Zbl 1194.83013
[6] H.-J. Bungartz and M. Griebel, Sparse grids, Acta Numer., 13 (2004), pp. 147–269, . · Zbl 1118.65388
[7] W. Cao, C.-W. Shu, Y. Yang, and Z. Zhang, Superconvergence of discontinuous Galerkin methods for two-dimensional hyperbolic equations, SIAM J. Numer. Anal., 53 (2015), pp. 1651–1671, . · Zbl 1328.65195
[8] Y. Cheng, A. J. Christlieb, and X. Zhong, Energy-conserving discontinuous Galerkin methods for the Vlasov–Ampère system, J. Comput. Phys., 256 (2014), pp. 630–655, . · Zbl 1349.78030
[9] Y. Cheng, A. J. Christlieb, and X. Zhong, Energy-conserving discontinuous Galerkin methods for the Vlasov-Maxwell system, J. Comput. Phys., 279 (2014), pp. 145-173, . · Zbl 1351.76053
[10] Y. Cheng, I. M. Gamba, F. Li, and P. J. Morrison, Discontinuous Galerkin methods for the Vlasov–Maxwell equations, SIAM J. Numer. Anal., 52 (2014), pp. 1017–1049, . · Zbl 1307.76051
[11] Y. Cheng, I. M. Gamba, and P. J. Morrison, Study of conservation and recurrence of Runge–Kutta discontinuous Galerkin schemes for Vlasov–Poisson systems, J. Sci. Comput., 56 (2013), pp. 319–349 . · Zbl 1281.82028
[12] Y. Cheng, I. M. Gamba, and J. Proft, Positivity-preserving discontinuous Galerkin schemes for linear Vlasov-Boltzmann transport equations, Math. Comp., 81 (2012), pp. 153–190, . · Zbl 1233.82036
[13] P. Ciarlet, The Finite Element Method for Elliptic Problems, North-Holland, Amsterdam, 1975.
[14] B. Cockburn, G. Kanschat, I. Perugia, and D. Schötzau, Superconvergence of the local discontinuous Galerkin method for elliptic problems on Cartesian grids, SIAM J. Numer. Anal., 39 (2001), pp. 264–285, . · Zbl 1041.65080
[15] B. Cockburn, G. E. Karniadakis, and C.-W. Shu, The development of discontinuous Galerkin methods, in Discontinuous Galerkin Methods: Theory, Computation, and Applications, Lect. Notes Comput. Sci. Eng. 11, B. Cockburn, G. E. Karniadakis, and C.-W. Shu, eds., Springer, Berlin, 2000, pp. 3–50. · Zbl 0989.76045
[16] B. Cockburn and C.-W. Shu, Runge-Kutta discontinuous Galerkin methods for convection-dominated problems, J. Sci. Comput., 16 (2001), pp. 173–261, . · Zbl 1065.76135
[17] J. Garcke and M. Griebel, eds., Sparse Grids and Applications, Springer-Verlag, Berlin, Heidelberg, 2013.
[18] K. Grella and C. Schwab, Sparse discrete ordinates method in radiative transfer, Comput. Methods Appl. Math., 11 (2011), pp. 305–326, . · Zbl 1283.35141
[19] K. Grella and C. Schwab, Sparse tensor spherical harmonics approximation in radiative transfer, J. Comput. Phys., 230 (2011), pp. 8452–8473, . · Zbl 1246.65217
[20] W. Guo and Y. Cheng, A Sparse Grid Discontinuous Galerkin Method for High-Dimensional Transport Equations and Its Application to Kinetic Simulations, preprint, , 2016. · Zbl 1353.82064
[21] R. Heath, I. Gamba, P. Morrison, and C. Michler, A discontinuous Galerkin method for the Vlasov-Poisson system, J. Comput. Phys., 231 (2012), pp. 1140–1174, . · Zbl 1244.82081
[22] C. Kowitz, D. Pflüger, F. Jenko, and M. Hegland, The Combination Technique for the Initial Value Problem in Linear Gyrokinetics, in Sparse Grids and Applications, Springer-Verlag, Berlin, Heidelberg, 2013, pp. 205–222.
[23] J. Qiu and C. Shu, Positivity preserving semi-Lagrangian discontinuous Galerkin formulation: Theoretical analysis and application to the Vlasov-Poisson system, J. Comput. Phys., 230 (2011), pp. 8386–8409, . · Zbl 1273.65147
[24] C. Schwab, \(p\)-and \(hp\)-Finite Element Methods: Theory and Applications in Solid and Fluid Mechanics, The Clarendon Press, Oxford University Press, New York, 1998. · Zbl 0910.73003
[25] C. Schwab, E. Süli, and R. Todor, Sparse finite element approximation of high-dimensional transport-dominated diffusion problems, M2AN Math. Model. Numer. Anal., 42 (2008), pp. 777–819, . · Zbl 1159.65094
[26] C.-W. Shu and S. Osher, Efficient implementation of essentially non-oscillatory shock-capturing schemes, J. Comput. Phys., 77 (1988), pp. 439–471, . · Zbl 0653.65072
[27] T. von Petersdorff and C. Schwab, Numerical solution of parabolic equations in high dimensions, M2AN Math. Model. Numer. Anal., 38 (2004), pp. 93–127, . · Zbl 1083.65095
[28] Z. Wang, Q. Tang, W. Guo, and Y. Cheng, Sparse grid discontinuous Galerkin methods for high-dimensional elliptic equations, J. Comput. Phys., 314 (2016), pp. 244—263, . · Zbl 1349.65636
[29] G. Widmer, R. Hiptmair, and C. Schwab, Sparse adaptive finite elements for radiative transfer, J. Comput. Phys., 227 (2008), pp. 6071–6105, . · Zbl 1147.65095
[30] Q. Zhang and C. Shu, Error estimates to smooth solutions of Runge–Kutta discontinuous Galerkin methods for scalar conservation laws, SIAM J. Numer. Anal., 42 (2004), pp. 641–666, . · Zbl 1078.65080
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.