zbMATH — the first resource for mathematics

Levi decomposable algebras in the classical Lie algebras. (English) Zbl 1354.17007
Summary: We examine embeddings of an important class of Levi decomposable algebras into the classical Lie algebras. In particular, we classify the embeddings of \(A_n\uplus \mathbb{C}^{n + 1}\), \(B_n\uplus \mathbb{C}^{2 n + 1}\), \(C_n\uplus \mathbb{C}^{2 n}\), and \(D_n\uplus \mathbb{C}^{2 n}\) into the complex simple Lie algebras \(A_{n + 1}\), \(B_{n + 1}\), \(C_{n + 1}\), and \(D_{n + 1}\), respectively, up to inner automorphism.

17B20 Simple, semisimple, reductive (super)algebras
17B40 Automorphisms, derivations, other operators for Lie algebras and super algebras
Full Text: DOI
[1] Carter, R., Lie algebras of finite and affine type, (2005), Cambridge University Press Cambridge · Zbl 1110.17001
[2] Douglas, A.; Premat, A., A class of nonunitary representations of the Euclidean algebra \(\mathfrak{e}(2)\), Comm. Algebra, 35, 5, 1433-1448, (2007) · Zbl 1232.17012
[3] Douglas, A.; Repka, J., Embedding the Euclidean algebra \(\mathfrak{e}(3)\) into the special linear algebra \(\mathfrak{sl}(4, \mathbb{C})\) and restrictions of irreducible representations of \(\mathfrak{sl}(4, \mathbb{C})\), J. Math. Phys., 52, 35, 013504, (2011) · Zbl 1314.22009
[4] Douglas, A.; Repka, J., Indecomposable representations of the Euclidean algebra \(\mathfrak{e}(3)\) from irreducible representations of \(\mathfrak{sl}(4, \mathbb{C})\), Bull. Aust. Math. Soc., 83, 439-449, (2011) · Zbl 1239.17002
[5] Douglas, A.; Repka, J., Indecomposable representations of the Euclidean algebra \(\mathfrak{e}(3)\) from irreducible representations of the symplectic algebra \(\mathfrak{sp}(4, \mathbb{C})\), J. Phys. Conf. Ser., 284, 012022, (2011)
[6] Dynkin, E. B., Semisimple subalgebras of semisimple Lie algebras, Mat. Sb. N.S., 30, 72, 349-462, (1952), English translation in: Amer. Math. Soc. Transl. 6 (1957), 111-244 · Zbl 0048.01701
[7] Fulton, W.; Harris, J., Representation theory, (1991), Springer-Verlag New York
[8] GAP-groups, algorithms, and programming, version 4.2, (2000)
[9] de Graaf, W. A., SLA-computing with simple Lie algebras. A GAP package, (2009)
[10] de Graaf, W. A., Constructing semisimple subalgebras of semisimple Lie algebras, J. Algebra, 325, 416-430, (2011) · Zbl 1255.17007
[11] Knapp, A. W., Lie groups beyond an introduction, (1988), Birkäuser Boston
[12] Humphreys, J. E., Introduction to Lie algebras and representation theory, (1972), Springer-Verlag New York · Zbl 0254.17004
[13] Jacobson, N., Lie algebras, (1962), Dover Publications New York · Zbl 0121.27504
[14] Maltsev, A. I., On semisimple subgroups of Lie groups, Izv. Akad. Nauk SSSR Ser. Mat., 8, 4, 143-174, (1944), (Russian) MR0011303 (6:146b)
[15] Minchenko, A. N., The semisimple subalgebras of exceptional Lie algebras, Trans. Moscow Math. Soc., 2006, 225-259, (2006), S 0077-1554(06)00156-7 · Zbl 1152.17003
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.