zbMATH — the first resource for mathematics

Efficient PDE constrained shape optimization based on Steklov-Poincaré-type metrics. (English) Zbl 1354.49095

49Q10 Optimization of shapes other than minimal surfaces
49M30 Other numerical methods in calculus of variations (MSC2010)
65K10 Numerical optimization and variational techniques
35Q93 PDEs in connection with control and optimization
57N25 Shapes (aspects of topological manifolds)
PDF BibTeX Cite
Full Text: DOI arXiv
[1] P.-A. Absil, R. Mahony, and R. Sepulchre, Optimization Algorithms on Matrix Manifolds, Princeton University Press, Princeton, NJ, 2008. · Zbl 1147.65043
[2] V. I. Agoshkov and V. I. Lebedev, Poincaré-Steklov operators and methods of partition of the domain in variational problems, in Computational Processes and Systems, No. 2, Nauka, Moscow, 1985, pp. 173–227 (in Russian). · Zbl 0596.35030
[3] G. Allaire, Conception optimale de structures, Math. Appl. (Berlin) 58, Springer-Verlag, Berlin, 2007. · Zbl 1132.49033
[4] K. Bandara, F. Cirak, G. Of, O. Steinbach, and J. Zapletal, Boundary element based multiresolution shape optimisation in electrostatics, J. Comput. Phys., 297 (2015), pp. 584–598. · Zbl 1349.78081
[5] M. Berggren, A unified discrete-continuous sensitivity analysis method for shape optimization, in Applied and Numerical Partial Differential Equations, Comput. Methods Appl. Sci. 15, W. Fitzgibbon et al., eds., Springer, New York, 2010, pp. 25–39. · Zbl 1186.65078
[6] R. Correa and A. Seeger, Directional derivative of a minmax function, Nonlinear Anal., 9 (1985), pp. 13–22. · Zbl 0556.49007
[7] M. Dambrine and M. Pierre, About stability of equilibrium shapes, M2AN Math. Model. Numer. Anal., 34 (2000), pp. 811–834. · Zbl 0966.49023
[8] M. C. Delfour and J.-P. Zolésio, Shapes and Geometries: Metrics, Analysis, Differential Calculus, and Optimization, 2nd ed., Adv. Des. Control 22, SIAM, Philadelphia, 2011, . · Zbl 1251.49001
[9] K. Eppler, H. Harbrecht and R. Schneider, On convergence in elliptic shape optimization, SIAM J. Control Optim., 46 (2007), pp. 61–83, . · Zbl 1354.49093
[10] L. C. Evans, Partial Differential Equations, American Mathematical Society, Providence, RI, 1993. · Zbl 0840.65088
[11] P. Gangl, U. Langer, A. Laurain, H. Meftahi, and K. Sturm, Shape Optimization of an Electric Motor Subject to Nonlinear Magnetostatics, preprint, , 2015. · Zbl 1330.49042
[12] S. Gross and A. Reusken, Numerical Methods for Two-Phase Incompressible Flows, Springer Ser. Comput. Math. 40, Springer-Verlag, Berlin, 2011. · Zbl 1222.76002
[13] R. Hiptmair and A. Paganini, Shape optimization by pursuing diffeomorphisms, Comput. Methods Appl. Math., 15 (2015), pp. 291–305. · Zbl 1321.49076
[14] B. N. Khoromskij and G. Wittum, Numerical solution of elliptic differential equations by reduction to the interface, Lect. Notes Comput. Sci. Eng. 36, Springer-Verlag, Berlin, 2004. · Zbl 1043.65128
[15] A. Laurain and K. Sturm, Domain Expression of the Shape Derivative and Application to Electrical Impedance Tomography, Technical Report 1863, WIAS, Berlin, Germany, 2013.
[16] M. Meyer, M. Desbrun, P. Schröder, and A. H. Barr, Discrete differential-geometry operators for triangulated \(2\)-manifolds, in Visualization and Mathematics III, Springer, Berlin, 2003, pp. 35–57. · Zbl 1069.53004
[17] P. W. Michor and D. Mumford, Riemannian geometries on spaces of plane curves, J. Eur. Math. Soc. (JEMS), 8 (2006), pp. 1–48. · Zbl 1101.58005
[18] A. Nägel, V. H. Schulz, M. Siebenborn, and G. Wittum, Scalable shape optimization methods for structured inverse modeling in \(3\)D diffusive processes, Comput. Vis. Sci., 17 (2015), pp. 79–88. · Zbl 1360.65240
[19] A. Novruzi and M. Pierre, Structure of shape derivatives, J. Evol. Equ., 2 (2002), pp. 365–382. · Zbl 1357.49150
[20] A. Paganini, Approximative Shape Gradients for Interface Problems, Research Report 2014-12, Seminar for Applied Mathematics, ETH Zürich, Zürich, Switzerland, 2014. · Zbl 1329.49096
[21] S. Schmidt, C. Ilic, V. Schulz, and N. R. Gauger, Three-dimensional large-scale aerodynamic shape optimization based on shape calculus, AIAA J., 51 (2013), pp. 2615–2627.
[22] S. Schmidt and V. H. Schulz, Impulse response approximations of discrete shape Hessians with application in CFD, SIAM J. Control Optim., 48 (2009), pp. 2562–2580, . · Zbl 1387.49064
[23] V. H. Schulz, A Riemannian view on shape optimization, Found. Comput. Math., 14 (2014), pp. 483–501. · Zbl 1296.49037
[24] V. H. Schulz, M. Siebenborn, and K. Welker, Structured inverse modeling in parabolic diffusion problems, SIAM J. Control Optim., 53 (2015), pp. 3319–3338, . · Zbl 1329.65134
[25] V. H. Schulz, M. Siebenborn, and K. Welker, Towards a Lagrange-Newton approach for PDE constrained shape optimization, in New Trends in Shape Optimization, Internat. Ser. Numer. Math. 166, A. Pratelli and G. Leugering, eds., Birkhäuser/Springer, Cham, Switzerland, 2015, pp 229–249, . · Zbl 1329.49092
[26] J. Sokolowski, Displacement Derivatives in Shape Optimization of Thin Shells, Research Report RR-2995, INRIA, , 1996. · Zbl 0894.49025
[27] J. Sokolowski and J.-P. Zolésio, An Introduction to Shape Optimization, Springer-Verlag, Berlin, Heidelberg, 1992.
[28] E. Stavropoulou, M. Hojjat, and K.-U. Bletzinger, In-plane mesh regularization for node-based shape optimization problems, Comput. Methods Appl. Mech. Engrg., 275 (2014), pp. 39–54. · Zbl 1296.74083
[29] K. Sturm, Lagrange Method in Shape Optimization for Non-Linear Partial Differential Equations: A Material Derivative Free Approach, Technical Report 1817, WIAS, Berlin, Germany, 2013.
[30] F. Tröltzsch, Optimal Control of Partial Differential Equations: Theory, Methods, and Applications, Grad. Stud. Math. 112, American Mathematical Society, Providence, RI, 2010.
[31] R. Udawalpola and M. Berggren, Optimization of an acoustic horn with respect to efficiency and directivity, Internat. J. Numer. Methods Engrg., 73 (2007), pp. 1571–1606. · Zbl 1159.76043
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.