zbMATH — the first resource for mathematics

Effect of material nonlinearity on spatial buckling of nanorods and nanotubes. (English) Zbl 1354.74023
Summary: We show the importance of incorporating material nonlinearity for accurate determination of spatial buckling of nanorods and nanotubes. Both the nanorods and nanotubes are modeled as a special Cosserat rod whose nonlinear material laws are obtained using the recently proposed helical Cauchy-Born rule. We first present Euler buckling of solid diamond nanorods whose normalized buckling load, obtained from fully atomistic calculations, exhibits an interesting trend. The buckling load starts from unity at large aspect ratio of the nanorod, then as the aspect ratio is decreased, the buckling load increases slowly and finally decreases rapidly. We attribute this trend to material nonlinearity of the nanorod’s core at large compressive strain. We also discuss how surface stress affects buckling in nanorods. We then present the effect of compression and twist on buckling of single-walled carbon nanotubes. Interestingly, for highly twisted nanotubes, fully atomistic calculations show the first buckled mode to be different from a typical Euler buckling mode. Both the observations about nanorods and nanotubes are accurately replicated in the finite element special Cosserat rod simulation when the material nonlinearity is also incorporated. However, the simulation results exhibit completely different trend when only linear material laws are incorporated.

74B20 Nonlinear elasticity
74A25 Molecular, statistical, and kinetic theories in solid mechanics
74Q15 Effective constitutive equations in solid mechanics
Full Text: DOI
[1] Antman, S.S.: Nonlinear Problems of Elasticity. Springer, New York (1995) · Zbl 0820.73002
[2] Arroyo, M.; Belytschko, T., An atomistic-based finite deformation membrane for single layer crystalline films, J. Mech. Phys. Solids, 50, 1941-1977, (2002) · Zbl 1006.74061
[3] Bertails, F.; Audoly, B.; Cani, M.P.; Querleux, B.; Leroy, F.; Lévêque, J.L., Super-helices for predicting the dynamics of natural hair, ACM Trans. Graph., 25, 1180-1187, (2006)
[4] Bozec, L.; Heijden, G.; Horton, M., Collagen fibrils: nanoscale ropes, Biophys. J., 92, 70-75, (2007)
[5] Brenner, D.W., Empirical potential for hydrocarbons for use in simulating the chemical vapor deposition of diamond films, Phys. Rev. B, 42, 9458, (1990)
[6] Buehler, M.; Kong, Y.; Gao, H., Deformation mechanisms of very long single-wall carbon nanotubes subject to compressive loading, J. Eng. Mater. Technol., 126, 245-249, (2004)
[7] Chandraseker, K.; Mukherjee, S.; Paci, J.T.; Schatz, G.C., An atomistic-continuum Cosserat rod model of carbon nanotubes, J. Mech. Phys. Solids, 57, 932-958, (2009)
[8] Cowper, G.R., The shear coefficient in timoshenko’s beam theory, J. Appl. Mech., 33, 335-340, (1966) · Zbl 0151.37901
[9] Cuenot, S.; Frétigny, C.; Demoustier-Champagne, S.; Nysten, B., Surface tension effect on the mechanical properties of nanomaterials measured by atomic force microscopy, Phys. Rev. B, 69, (2004)
[10] Fang, C.; Kumar, A.; Mukherjee, S., Finite element analysis of carbon nanotubes based on a rod model including in-plane cross-sectional deformation, Int. J. Solids Struct., 50, 49-56, (2013)
[11] Goriely, A.; Tabor, M., Spontaneous helix hand reversal and tendril perversion in climbing plants, Phys. Rev. Lett., 80, 1564, (1998)
[12] Gould, T.; Burton, D.A., A Cosserat rod model with microstructure, New J. Phys., 8, 1-17, (2006)
[13] Goyal, S.; Perkins, N.C.; Lee, C.L., Non-linear dynamic intertwining of rods with self-contact, Int. J. Non-Linear Mech., 43, 65-73, (2008) · Zbl 1203.74081
[14] Gurtin, M.E.; Murdoch, A.I., A continuum theory of elastic material surfaces, Arch. Ration. Mech. Anal., 57, 291-323, (1975) · Zbl 0326.73001
[15] Hakobyan, Ye.; Tadmor, E.B.; James, R.D., Objective quasicontinuum approach for rod problems, Phys. Rev. B, 86, (2012)
[16] Healey, T.J., Material symmetry and chirality in nonlinearly elastic rods, Math. Mech. Solids, 7, 405-420, (2002) · Zbl 1090.74610
[17] Healey, T.J.; Papadopoulos, C.M., Bifurcation of hemitropic elastic rods under axial thrust, Q. Appl. Math., 71, 729-753, (2013) · Zbl 1282.74047
[18] James, R.D., Objective structures, J. Mech. Phys. Solids, 54, 2354-2390, (2006) · Zbl 1120.74312
[19] Jing, G.Y.; Duan, H.; Sun, X.M.; Zhang, Z.S.; Xu, J.; Li, Y.D.; Wang, J.X.; Yu, D.P., Surface effects on elastic properties of silver nanowires: contact atomic-force microscopy, Phys. Rev. B, 73, (2006)
[20] Kumar, A.; Healey, T.J., A generalized computational approach to stability of static equilibria of nonlinearly elastic rods in the presence of constraints, Comput. Methods Appl. Mech. Eng., 199, 1805-1815, (2010) · Zbl 1231.74484
[21] Kumar, A.; Mukherjee, S.; Paci, J.T.; Chandraseker, K.; Schatz, G.C., A rod model for three dimensional deformations of single-walled carbon nanotubes, Int. J. Solids Struct., 48, 2849-2858, (2011)
[22] Kumar, A.; Kumar, S.; Gupta, P., A helical Cauchy-Born rule for special Cosserat rod modeling of nano and continuum rods, J. Elast., 124, 81-106, (2016) · Zbl 1338.74012
[23] Liang, H.; Upamanyu, M.; Huang, H., Size dependent elasticity of nanowires: nonlinear effects, Phys. Rev. B, 71, (2005)
[24] Liew, K.M.; Wong, C.H.; He, X.Q.; Tan, M.J.; Meguid, S.A., Nanomechanics of single and multiwalled carbon nanotubes, Phys. Rev. B, 69, (2004)
[25] Liu, J.; Huang, J.; Su, T.; Bertoldi, K.; Clarke, D.R., Structural transition from helices to hemihelices, PLoS ONE, 9, (2014)
[26] Manning, R.S.; Maddocks, J.H.; Kahn, J.D., A continuum rod model of sequence-dependent DNA structure, J. Chem. Phys., 105, 5626, (1996)
[27] Miller, R.; Shenoy, V.B., Size-dependent elastic properties of nano-sized structural elements, Nanotechnology, 11, 139-147, (2000)
[28] On, B.B.; Altus, E.; Tadmor, E.B., Surface effects in non-uniform nanobeams: continuum vs. atomistic modeling, Int. J. Solids Struct., 47, 1243-1252, (2010) · Zbl 1193.74006
[29] Pantano, A.; Boyce, M.C.; Parks, D.M., Nonlinear structural mechanics based modeling of carbon nanotube deformation, Phys. Rev. Lett., 91, (2003)
[30] Park, H.S., Surface stress effects on the critical buckling strains of silicon nanowires, Compos. Mater. Sci., 51, 396-401, (2012)
[31] Park, H.S.; Klein, P.A.; Wagner, G.J., A surface Cauchy-Born model for nanoscale materials, Int. J. Numer. Methods Eng., 68, 1072-1095, (2006) · Zbl 1128.74005
[32] Shenoy, V.B., Atomistic calculations of elastic properties of metallic fcc crystal surfaces, Phys. Rev. B, 71, (2005)
[33] Tang, W.; Lagadec, P.; Gould, D.; Wan, T.R.; Zhai, J.; How, T., A realistic elastic rod model for real-time simulation of minimally invasive vascular interventions, Vis. Comput., 26, 1157-1165, (2010)
[34] Wang, G.F.; Feng, X.Q., Surface effects on buckling of nanowires under uniaxial compression, Appl. Phys. Lett., 94, (2009)
[35] Wang, G.F.; Feng, X.Q., Timoshenko beam model for buckling and vibration of nanowires with surface effects, J. Phys. D, Appl. Phys., 42, (2009)
[36] Wang, M.D.; Yin, H.; Landick, R.; Gelles, J.; Block, S.M., Stretching DNA with optical tweezers, Biophys. J., 72, 1335-1346, (1997)
[37] Wong, E.W.; Sheehan, P.E.; Lieber, C.M., Nanobeam mechanics: elasticity, strength, and toughness of nanorods and nanotubes, Science, 277, 1971-1975, (1997)
[38] Yakobson, B.I.; Brabec, C.J.; Bernholc, J., Nanomechanics of carbon tubes: instabilities beyond linear response, Phys. Rev. Lett., 76, 2511, (1996)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.