×

zbMATH — the first resource for mathematics

Simple chaotic flows with a line equilibrium. (English) Zbl 1355.37056
Chaos Solitons Fractals 57, 79-84 (2013); corrigendum ibid. 77, 341-342 (2015).
Summary: Using a systematic computer search, nine simple chaotic flows with quadratic nonlinearities were found that have the unusual feature of having a line equilibrium. Such systems belong to a newly introduced category of chaotic systems with hidden attractors that are important and potentially problematic in engineering applications.

MSC:
37D45 Strange attractors, chaotic dynamics of systems with hyperbolic behavior
34C28 Complex behavior and chaotic systems of ordinary differential equations
34C05 Topological structure of integral curves, singular points, limit cycles of ordinary differential equations
37M05 Simulation of dynamical systems
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Kuznetsov, N. V.; Leonov, G. A.; Vagaitsev, V. I., Analytical-numerical method for attractor localization of generalized chua’s system, IFAC Proc., 4, 29-33, (2010) · Zbl 1251.37081
[2] Kuznetsov NV, Kuznetsova OA, Leonov GA, Vagaytsev VI. Hidden attractor in Chua’s circuits. In: ICINCO 2011 - Proc. 8th Int. Conf. Informatics in Control, Automation and Robotics, 2011. p. 279-283.
[3] Kuznetsov, N. V.; Leonov, G. A.; Seledzhi, S. M., Hidden oscillations in nonlinear control systems, IFAC Proc., 18, 2506-2510, (2011)
[4] Leonov, G. A.; Kuznetsov, N. V., Algorithms for searching for hidden oscillations in the aizerman and Kalman problems, Dokl Math, 84, 475-481, (2011) · Zbl 1247.34063
[5] Leonov, G. A.; Kuznetsov, N. V., Analytical-numerical methods for investigation of hidden oscillations in nonlinear control systems, IFAC Proc, 18, 2494-2505, (2011)
[6] Leonov, G. A.; Kuznetsov, N. V.; Kuznetsova, O. A.; Seledzhi, S. M.; Vagaitsev, V. I., Hidden oscillations in dynamical systems, Trans Syst Control, 6, 54-67, (2011)
[7] Leonov, G. A.; Kuznetsov, N. V.; Vagaitsev, V. I., Localization of hidden chua’s attractors, Phys Lett A, 375, 2230-2233, (2011) · Zbl 1242.34102
[8] Leonov, G. A.; Kuznetsov, N. V.; Vagaitsev, V. I., Hidden attractor in smooth Chua systems, Physica D, 241, 1482-1486, (2012) · Zbl 1277.34052
[9] Leonov GA, Kuznetsov NV. Analytical-numerical methods for hidden attractors’ localization: the 16th Hilbert problem, Aizerman and Kalman conjectures, and Chua circuits. In: Numerical Methods for Differential Equations, Optimization, and Technological Problems, Computational Methods in Applied Sciences, vol. 27. 2013. p. 41-64. · Zbl 1267.65200
[10] Leonov, G. A.; Kuznetsov, N. V., Hidden attractors in dynamical systems: from hidden oscillation in Hilbert-Kolmogorov, aizerman and Kalman problems to hidden chaotic attractor in Chua circuits, Int. J. Bifurcation Chaos, 23, 1330002, (2013), p. 69 · Zbl 1270.34003
[11] Jafari, S.; Sprott, J. C.; Golpayegani, S. M.R. H., Elementary quadratic chaotic flows with no equilibria, Phys Lett A, 377, 699-702, (2013)
[12] Molaie M, Jafari S, Sprott JC, Golpayegani SMRH, Simple chaotic flows with one stable equilibrium. Int. J. Bifurcation Chaos, in press. · Zbl 1284.34064
[13] Wang, X.; Chen, G., A chaotic system with only one stable equilibrium, Commun Nonlinear Sci Numer Simulat, 17, 1264-1272, (2012)
[14] Wang, X.; Chen, G., Constructing a chaotic system with any number of equilibria, Nonlinear Dyn, 71, 429-436, (2013)
[15] Wei, Z.; Yang, Q., Dynamical analysis of the generalized sprott C system with only two stable equilibria, Nonlinear Dyn, 68, 543-554, (2012) · Zbl 1252.93067
[16] Wang, X.; Chen, J.; Lu, J. A.; Chen, G., A simple yet complex one-parameter family of generalized Lorenz-like systems, Int J Bifurcation Chaos, 22, 1250116, (2012), p. 16 · Zbl 1258.34112
[17] Wei, Z., Dynamical behaviors of a chaotic system with no equilibria, Phys Lett A, 376, 102-108, (2011) · Zbl 1255.37013
[18] Wang, Z.; Cang, S.; Ochola, E. O.; Sun, Y., A hyperchaotic system without equilibrium, Nonlinear Dyn, 69, 531-537, (2012)
[19] Wei, Z., Delayed feedback on the 3-D chaotic system only with two stable node-foci, Comput Math Appl, 63, 728-738, (2011) · Zbl 1238.34122
[20] Wei, Z.; Yang, Q., Anti-control of Hopf bifurcation in the new chaotic system with two stable node-foci, Appl Math Comput, 217, 422-429, (2010) · Zbl 1200.65102
[21] Messias, M.; Nespoli, C.; Botta, V. A., Hopf bifurcation from lines of equilibria without parameters in memristor oscillators, Int. J. Bifurcation Chaos, 20, 437-450, (2010) · Zbl 1188.34060
[22] Fiedler, B.; Liebscher, S.; Alexander, J. C., Generic Hopf bifurcation from lines of equilibria without parameters: I theory, J Differ Equ, 167, 16-35, (2000) · Zbl 0978.34035
[23] Fiedler, B.; Liebscher, S., Generic Hopf bifurcation from lines of equilibria without parameters: II. systems of viscous hyperbolic balance laws, SIAM J Math Anal, 31, 1396-1404, (1998) · Zbl 0980.35098
[24] Fiedler, B.; Liebscher, S.; Alexander, J. C., Generic Hopf bifurcation from lines of equilibria without parameters III: binary oscillations, Int J Bifurcation Chaos, 10, 1613, (2000) · Zbl 1090.37556
[25] Zhou, P.; Huang, K.; Yang, C. D., A fractional-order chaotic system with an infinite number of equilibrium points, Discrete Dyn Nat Soc, 6, (2013), Article ID 910189 · Zbl 1264.65135
[26] Sprott, J. C., Some simple chaotic flows, Phys Rev E, 50, R647, (1994)
[27] Hoover, W. G., Remark on some simple chaotic flows, Phys Rev E, 51, 759, (1995)
[28] Posh, H. A.; Hoover, W. G.; Vesely, F. J., Canonical dynamics of the nosé oscillator: stability, order, and chaos, Phys Rev A, 33, 4253, (1986)
[29] Sprott, J. C., Elegant chaos: algebraically simple chaotic flows, (2010), World Scientific · Zbl 1222.37005
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.