×

zbMATH — the first resource for mathematics

Clique topology reveals intrinsic geometric structure in neural correlations. (English) Zbl 1355.92015
Summary: Detecting meaningful structure in neural activity and connectivity data is challenging in the presence of hidden nonlinearities, where traditional eigenvalue-based methods may be misleading. We introduce a novel approach to matrix analysis, called clique topology, that extracts features of the data invariant under nonlinear monotone transformations. These features can be used to detect both random and geometric structure, and depend only on the relative ordering of matrix entries. We then analyzed the activity of pyramidal neurons in rat hippocampus, recorded while the animal was exploring a two-dimensional environment, and confirmed that our method is able to detect geometric organization using only the intrinsic pattern of neural correlations. Remarkably, we found similar results during non-spatial behaviors such as wheel running and REM sleep. This suggests that the geometric structure of correlations is shaped by the underlying hippocampal circuits, and is not merely a consequence of position coding. We propose that clique topology is a powerful new tool for matrix analysis in biological settings, where the relationship of observed quantities to more meaningful variables is often nonlinear and unknown.

MSC:
92C20 Neural biology
92B20 Neural networks for/in biological studies, artificial life and related topics
PDF BibTeX XML Cite
Full Text: DOI arXiv
References:
[1] DOI: 10.1016/0006-8993(71)90358-1 · doi:10.1016/0006-8993(71)90358-1
[2] DOI: 10.1038/nature12063 · doi:10.1038/nature12063
[3] DOI: 10.1002/(SICI)1098-1063(1996)6:3<281::AID-HIPO6>3.0.CO;2-Q · doi:10.1002/(SICI)1098-1063(1996)6:3<281::AID-HIPO6>3.0.CO;2-Q
[4] DOI: 10.2307/1970008 · Zbl 0085.13203 · doi:10.2307/1970008
[5] Pastur L Shcherbina M (2011) Eigenvalue Distribution of Large Random Matrices, Mathematical Surveys and Monographs (American Mathematical Society, Providence, RI), Vol 171 · Zbl 1244.15002
[6] Hatcher A (2002) Algebraic Topology (Cambridge Univ Press, Cambridge, UK) · Zbl 1044.55001
[7] Edelsbrunner H Harer J (2008) Surveys on Discrete and Computational Geometry, Contemporary Mathematics (American Mathematical Society, Providence, RI), Vol 453, pp 257–282 · doi:10.1090/conm/453/08802
[8] DOI: 10.1016/j.disc.2008.02.037 · Zbl 1215.05163 · doi:10.1016/j.disc.2008.02.037
[9] DOI: 10.4310/HHA.2013.v15.n1.a17 · Zbl 1268.05180 · doi:10.4310/HHA.2013.v15.n1.a17
[10] DOI: 10.1007/s00454-004-1146-y · Zbl 1069.55003 · doi:10.1007/s00454-004-1146-y
[11] DOI: 10.1007/s10208-013-9145-0 · Zbl 1387.55010 · doi:10.1007/s10208-013-9145-0
[12] DOI: 10.1113/jphysiol.1959.sp006308 · doi:10.1113/jphysiol.1959.sp006308
[13] DOI: 10.1007/s00454-010-9319-3 · Zbl 1219.05175 · doi:10.1007/s00454-010-9319-3
[14] DOI: 10.1371/journal.pcbi.1000205 · doi:10.1371/journal.pcbi.1000205
[15] DOI: 10.1167/8.6.1 · doi:10.1167/8.6.1
[16] DOI: 10.1073/pnas.1102826108 · doi:10.1073/pnas.1102826108
[17] DOI: 10.1371/journal.pcbi.1002581 · doi:10.1371/journal.pcbi.1002581
[18] DOI: 10.1073/pnas.1313480110 · Zbl 1292.92014 · doi:10.1073/pnas.1313480110
[19] DOI: 10.1162/NECO_a_00538 · doi:10.1162/NECO_a_00538
[20] DOI: 10.1098/rsif.2014.0873 · doi:10.1098/rsif.2014.0873
[21] DOI: 10.1126/science.1159775 · doi:10.1126/science.1159775
[22] DOI: 10.1523/JNEUROSCI.3773-10.2011 · doi:10.1523/JNEUROSCI.3773-10.2011
[23] DOI: 10.1038/nn.3904 · doi:10.1038/nn.3904
[24] Hillar C Wibisono A (2013) Maximum entropy distributions on graphs. arXiv:1301.3321 [math.ST]
[25] Chazal F Guibas LJ Oudot SY Skraba P (2013) Persistence-based clustering in Riemannian manifolds. J ACM 60:41:1–41:38 · Zbl 1281.68176
[26] Giusti C (2014) Cliquetop: Matlab package for clique topology of symmetric matrices. Available at github.com/nebneuron/clique-top. Accessed June 1, 2014
[27] Nanda V (2013) The Perseus software project for rapid computation of persistent homology. Available at www.sas.upenn.edu/vnanda/perseus/index.html. Accessed June 1, 2014
[28] DOI: 10.1007/s00454-013-9529-6 · Zbl 1278.57030 · doi:10.1007/s00454-013-9529-6
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.