×

zbMATH — the first resource for mathematics

Genericity under parahoric restriction. (English) Zbl 1356.22018
Summary: We study the preservation of genericity under parahoric restriction of depth zero representations.

MSC:
22E50 Representations of Lie and linear algebraic groups over local fields
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] DeBacker, S; Reeder, M, Depth-zero supercuspidal \(L\)-packets and their stability, Ann. Math. (2), 169, 795-901, (2009) · Zbl 1193.11111
[2] Moy, A; Prasad, G, Jacquet functors and unrefined minimal K-types, Commentarii Mathematici Helvetici, 71, 98-121, (1996) · Zbl 0860.22006
[3] Roberts, B. and Schmidt, R.: Local Newforms for \(GSp(4)\), volume 1918 of Lecture Notes in Mathematics, 1 edn. Springer, Berlin (2007) · Zbl 1126.11027
[4] Rodier, F.: Whittaker models for admissible representations of reductive \(p\)-adic split groups. In: Harmonic Analysis on Homogeneous Spaces (Proc. Sympos. Pure Math., Vol. XXVI, Williams Coll., Williamstown, Mass., 1972), pp. 425-430. Am. Math. Soc., Providence, R.I. (1973) · Zbl 0860.22006
[5] Rösner, M.: Parahoric Restriction for \(\rm GSp(4)\) and the Inner Cohomology of Siegel Modular Threefolds. PhD thesis, Ruprecht-Karls-Universität Heidelberg, (2016) · Zbl 1193.11111
[6] Vignéras, M.-F.: Irreducible Modular Representations of a reductive \(p\)-adic Group and Simple Modules for Hecke Algebras. In: Casacuberta, C. et al. (ed.) European Congress of Mathematics, Barcelona, volume 201 of Progress in Mathematics, pp. 117-133. Birkhäuser, (2001) · Zbl 1024.22011
[7] Vignéras, M-F, Schur algebras of reductive p-adic groups. I., Duke Math J, 116, 35-75, (2003) · Zbl 1018.22015
[8] Yu, J-K, Construction of tame supercuspidal representations, J. Am. Math. Soc., 14, 579-622, (2001) · Zbl 0971.22012
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.