×

Multi-soliton solutions of the forced variable-coefficient extended Korteweg-de Vries equation arisen in fluid dynamics of internal solitary waves. (English) Zbl 1356.35205

Summary: Under investigation in this paper, with symbolic computation, is a forced variable-coefficient extended Korteweg-de Vries equation, which can describe the weakly-nonlinear long internal solitary waves (ISWs) in the fluid with the continuous stratification on density. By virtue of the Hirota bilinear method, multi-soliton solutions for such an equation with the external force term have been derived. Furthermore, effects are discussed with the aid of the characteristic line: (I) Inhomogeneities of media and nonuniformities of boundaries, depicted by the variable coefficients, play a role in the soliton behavior; (II) Solitons change their initial propagation direction on the compact shock or anti-shock wave background in the presence of the external time-dependent force, and the results present an extended view compared with that for the linear theory; (III) Combined effects of the inhomogeneities and external force are regarded as the nonlinear composition of the independent influence induced by the two factors. Those results could be expected to be helpful for the investigation on the dynamics of the ISWs in an ocean or atmosphere stratified fluid.

MSC:

35Q53 KdV equations (Korteweg-de Vries equations)
35Q35 PDEs in connection with fluid mechanics
35C08 Soliton solutions
76B25 Solitary waves for incompressible inviscid fluids
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Lamb, K.G., Polukhina, O., Talipova, T., Pelinovsky, E., Xiao, W., Kurkin, A.: Breather generation in fully nonlinear models of a stratified fluid. Phys. Rev. E 75, 046306 (2007)
[2] Bogucki, D., Dickey, T., Redekopp, L.G.: Sediment resuspension and mixing by resonantly generated internal solitary waves. J. Phys. Oceanogr. 27, 1181 (1997) · doi:10.1175/1520-0485(1997)027<1181:SRAMBR>2.0.CO;2
[3] Holloway, P.E., Pelinovsky, E., Talipova, T., Barnes, B.: A nonlinear model of internal tide transformation on the Australian North West Shelf. J. Phys. Oceanogr. 27, 871 (1997) · doi:10.1175/1520-0485(1997)027<0871:ANMOIT>2.0.CO;2
[4] Lamb, K.G.: Shoaling solitary internal waves: on a criterion for the formation of waves with trapped cores. J. Fluid Mech. 478, 81 (2003) · Zbl 1120.76305
[5] Small, R.J., Hornby, R.P.: A comparison of weakly and fully non-linear models of the shoaling of a solitary internal wave. Ocean Model. 8, 395 (2005) · doi:10.1016/j.ocemod.2004.02.002
[6] Stastna, M., Peltier, W.R.: On the resonant generation of large-amplitude internal solitary and solitary-like waves. J. Fluid Mech. 543, 267 (2005) · Zbl 1137.76328 · doi:10.1017/S002211200500652X
[7] Grimshaw, R.H., Pelinovsky, E., Talipova, T.: Modelling internal solitary waves in the coastal ocean. Surv. Geophys. 28, 273 (2007) · doi:10.1007/s10712-007-9020-0
[8] Slyunyaev, A.V.: Dynamics of localized waves with large amplitude in a weakly dispersive medium with a quadratic and positive cubic nonlinearity. J. Exp. Theor. Phys. 92, 529 (2001) · doi:10.1134/1.1364750
[9] Barnett, M.P., Capitani, J.F., Von Zur Gathen, J., Gerhard, J.: Symbolic calculation in chemistry: selected examples. Int. J. Quant. Chem. 100, 80 (2004) · doi:10.1002/qua.20097
[10] Hong, W.P.: Comment on: spherical Kadomtsev-Petviashvili equation and nebulons for dust ion-acoustic waves with symbolic computation. Phys. Lett. A 361, 520 (2007) · Zbl 1276.35133 · doi:10.1016/j.physleta.2006.11.021
[11] Tian, B., Gao, Y.T.: Spherical nebulons and Bäcklund transformation for a space or laboratory un-magnetized dusty plasma with symbolic computation. Eur. Phys. J. D 33, 59 (2005) · doi:10.1140/epjd/e2005-00036-6
[12] Tian, B., Gao, Y.T.: Comment on: exact solutions of cylindrical and spherical dust ion acoustic waves. Phys. Plasmas 12, 054701 (2005) · Zbl 1145.35452
[13] Tian, B., Gao, Y.T.: Cylindrical nebulons, symbolic computation and Bäcklund transformation for the cosmic dust acoustic waves. Phys. Plasmas 12, 070703 (2005)
[14] Tian, B., Gao, Y.T.: Spherical Kadomtsev-Petviashvili equation and nebulons for dust ion-acoustic waves with symbolic computation. Phys. Lett. A 340, 243 (2005) · Zbl 1145.35451 · doi:10.1016/j.physleta.2005.03.035
[15] Tian, B., Gao, Y.T.: On the solitonic structures of the cylindrical dust-acoustic and dust-ion-acoustic waves with symbolic computation. Phys. Lett. A 340, 449 (2005) · Zbl 1145.35452 · doi:10.1016/j.physleta.2005.03.082
[16] Tian, B., Gao, Y.T.: Symbolic computation on cylindrical-modified dust-ion-acoustic nebulons in dusty plasmas. Phys. Lett. A 362, 283 (2007) · Zbl 1197.82028 · doi:10.1016/j.physleta.2006.10.094
[17] Das, G., Sarma, J.: Response to comment on: a new mathematical approach for finding the solitary waves in dusty plasma. Phys. Plasmas 6, 4394 (1999) · doi:10.1063/1.873705
[18] Yan, Z.Y., Zhang, H.Q.: Symbolic computation and new families of exact soliton-like solutions to the integrable Broer-Kaup (BK) equations in (2+1)-dimensional spaces. J. Phys. A 34, 1785 (2001) · Zbl 0970.35147 · doi:10.1088/0305-4470/34/8/320
[19] Gao, Y.T., Tian, B.: Cosmic dust-ion-acoustic waves, spherical modified Kadomtsev-Petviashvili model, and symbolic computation. Phys. Plasmas 13, 112901 (2006)
[20] Gao, Y.T., Tian, B.: (3+1)-dimensional generalized Johnson model for cosmic dust-ion-acoustic nebulons with symbolic computation. Phys. Plasmas (Lett.) 13, 120703 (2006)
[21] Gao, Y.T., Tian, B.: Cylindrical Kadomtsev-Petviashvili model, nebulons and symbolic computation for cosmic dust-ion-acoustic waves. Phys. Lett. A 349, 314 (2006) · doi:10.1016/j.physleta.2005.09.040
[22] Gao, Y.T., Tian, B.: Reply to comment on: spherical Kadomtsev-Petviashvili equation and nebulons for dust-ion-acoustic waves with symbolic computation. Phys. Lett. A 361, 523 (2007) · Zbl 1325.35192 · doi:10.1016/j.physleta.2006.11.019
[23] Gao, Y.T., Tian, B.: On the non-planar dust-ion-acoustic waves in cosmic dusty plasmas with transverse perturbations. Europhys. Lett. 77, 15001 (2007) · doi:10.1209/0295-5075/77/15001
[24] Grimshaw, R.H., Pelinovsky, E., Stepanyants, Y., Talipova, T.: Modelling internal solitary waves on the Australian North West Shelf. Mar. Freshw. Res. 57, 265 (2006) · doi:10.1071/MF05016
[25] Grimshaw, R.H., Pelinovsky, D., Pelinovsky, E., Slunyaev, A.: Generation of large-amplitude solitons in the extended Korteweg–de Vries equation. Chaos 12, 1070 (2002) · Zbl 1080.35532 · doi:10.1063/1.1521391
[26] Kakutani, T., Yamasaki, N.: Solitary waves on a two-layer fluid. J. Phys. Soc. Jpn. 45, 674 (1978) · doi:10.1143/JPSJ.45.674
[27] Grimshaw, R.H., Pelinovsky, E., Poloukhina, O.: Higher-order Korteweg–de Vries models for internal solitary waves in a stratified shear flow with a free surface. Nonlinear Process. Geophys. 9, 221 (2002) · doi:10.5194/npg-9-221-2002
[28] Grimshaw, R.H., Pelinovsky, E., Talipova, T.: Solitary wave transformation in a medium with sign-variable quadratic nonlinearity and cubic nonlinearity. Phys. D 132, 40 (1999) · Zbl 0933.35169 · doi:10.1016/S0167-2789(99)00045-7
[29] Michalet, H., Barthelemy, E.: Experimental study of interfacial solitary waves. J. Fluid Mech. 366, 159 (1998) · Zbl 0967.76513 · doi:10.1017/S002211209800127X
[30] Grimshaw, R.H., Chan, K.H., Chow, K.W.: Transcritical flow of a stratified fluid: the forced extended Korteweg–de Vries model. Phys. Fluids 14, 755 (2002) · Zbl 1184.76196 · doi:10.1063/1.1429962
[31] Grimshaw, R.H., Smyth, N.F.: Resonant flow of a stratified fluid over topography. J. Fluid Mech. 169, 429 (1986) · Zbl 0614.76108 · doi:10.1017/S002211208600071X
[32] Hanazaki, H.: A numerical study of nonlinear waves in a transcritical flow of stratified fluid past an obstacle. Phys. Fluids A 4, 2230 (1992) · Zbl 0825.76168 · doi:10.1063/1.858464
[33] Talipova, T., Pelinovsky, E., Kouts, T.: Kinematic characteristics of an internal wave field in the Gotland Deep in the Baltic Sea. Oceanology 38, 33 (1998)
[34] Holloway, P.E., Pelinovsky, E., Talipova, T.: A generalized Korteweg–de Vries model of internal tide transformation in the coastal zone. J. Geophys. Res. C 104, 18333 (1999) · doi:10.1029/1999JC900144
[35] Tian, B., Wei, G.M., Zhang, C.Y., Shan, W.R., Gao, Y.T.: Transformations for a generalized variable-coefficient Korteweg–de Vries model from blood vessels, Bose–Einstein condensates, rods and positons with symbolic computation. Phys. Lett. A 356, 8 (2006) · Zbl 1160.37401 · doi:10.1016/j.physleta.2006.03.080
[36] Li, J., Xu, T., Meng, X.H., Zhang, Y.X., Zhang, H.Q., Tian, B.: Lax pair, Bäcklund transformation and N-soliton-like solution for a variable-coefficient Gardner equation from nonlinear lattice, plasma physics and ocean dynamics with symbolic computation. J. Math. Anal. Appl. 336, 1443 (2007) · Zbl 1128.35378 · doi:10.1016/j.jmaa.2007.03.064
[37] Grimshaw, R.H., Pelinovsky, E., Talipova, T., Kurkin, A.: Simulation of the transformation of internal solitary waves on oceanic shelves. J. Phys. Oceanogr. 34, 2774 (2004) · doi:10.1175/JPO2652.1
[38] Chow, K.W., Grimshaw, R.H., Ding, E.: Interactions of breathers and solitons in the extended Korteweg–de Vries equation. Wave Motion 43, 158 (2005) · Zbl 1231.35196 · doi:10.1016/j.wavemoti.2005.09.005
[39] Zahibo, N., Pelinovsky, E., Sergeeva, A.: Weakly damped KdV soliton dynamics with the random force. Chaos Solitons Fractals 39, 1645 (2009) · doi:10.1016/j.chaos.2007.06.032
[40] Djordjevic, V., Redekopp, L.: The fission and disintegration of internal solitary waves morning over two dimensional topography. J. Phys. Oceanogr. 8, 1016 (1978) · doi:10.1175/1520-0485(1978)008<1016:TFADOI>2.0.CO;2
[41] Miles, J.W.: On internal solitary waves. Tellus 31, 456 (1979) · Zbl 0414.70014 · doi:10.1111/j.2153-3490.1979.tb00924.x
[42] Miles, J.W.: On internal solitary waves II. Tellus 33, 397 (1981) · doi:10.1111/j.2153-3490.1981.tb01762.x
[43] Tay, K.G., Ong, C.T., Mohamad, M.N.: Forced perturbed Korteweg–de Vries equation in an elastic tube filled with a viscous fluid. Int. J. Eng. Sci. 45, 339 (2007) · Zbl 1213.35364 · doi:10.1016/j.ijengsci.2007.03.017
[44] Grimshaw, R.H., Pelinovsky, E.: Interaction of a solitary wave with an external force in the extended Korteweg–de Vries equation. Int. J. Bifurcat. Chaos 12, 2409 (2002) · Zbl 1042.35066 · doi:10.1142/S0218127402005947
[45] Hanazaki, H.: A numerical study of nonlinear waves in a transcritical flow of stratified fluid past an obstacle. Phys. Fluids A 4, 2230 (1992) · Zbl 0825.76168 · doi:10.1063/1.858464
[46] Hirota, R.: The Direct Method in Soliton Theory. Cambridge University Press, Cambridge (2004) · Zbl 1099.35111
[47] Zhang, C.Y., Yao, Z.Z., Zhu, H.W., Xu, T., Li, J., Meng, X.H., Gao, Y.T.: Exact analytic N-soliton-like solution in Wronskian form for a generalized variable-coefficient Korteweg–de Vries model from plasmas and fluid dynamics. Chin. Phys. Lett. 24, 1173 (2007) · doi:10.1088/0256-307X/24/5/013
[48] Hirota, R.: Exact solution of the Korteweg–de Vries equation for multiple collisions of solitons. Phys. Rev. Lett. 27, 1192 (1971) · Zbl 1168.35423 · doi:10.1103/PhysRevLett.27.1192
[49] Hirota, R.: Exact envelope-soliton solutions of a nonlinear wave equation. J. Math. Phys. 14, 805 (1973) · Zbl 0257.35052 · doi:10.1063/1.1666399
[50] Xu, X.G., Meng, X.H., Gao, Y.T., Wen, X.Y.: Analytic N-solitary-wave solution of a variable-coefficient Gardner equation from fluid dynamics and plasma physics. Appl. Math. Comput. 210, 313 (2009) · Zbl 1162.76013 · doi:10.1016/j.amc.2008.10.049
[51] Pelinovsky, D., Grimshaw, R.H.: Structural transformation of eigenvalues for a perturbed algebraic soliton potential. Phys. Lett. A 229, 165 (1997) · Zbl 1043.35522 · doi:10.1016/S0375-9601(97)00191-6
[52] Chow, K.W.: A class of doubly periodic waves for nonlinear evolution equations. Wave Motion 35, 71 (2002) · Zbl 1163.74329 · doi:10.1016/S0165-2125(01)00078-6
[53] Hereman, W., Nuseir, A.: Symbolic methods to construct exact solutions of nonlinear partial differential equations. Math. Comput. Simul. 43, 13 (1997) · Zbl 0866.65063 · doi:10.1016/S0378-4754(96)00053-5
[54] Veksler, A., Zarmi, Y.: Wave interactions and the analysis of the perturbed Burgers equation. Phys. D 211, 57 (2005) · Zbl 1084.35078 · doi:10.1016/j.physd.2005.08.001
[55] Sun, Z.Y., Gao, Y.T., Yu, X., Meng, X.H., Liu, Y.: Inelastic interactions of the multiple-front waves for the modified Kadomtsev-Petviashvili equation in fluid dynamics, plasma physics and electrodynamics. Wave Motion 46, 511 (2009) · Zbl 1231.37045 · doi:10.1016/j.wavemoti.2009.06.014
[56] Sun, Z.Y., Gao, Y.T., Yu, X., Liu, W.J., Liu, Y.: Bound vector solitons and soliton complexes for the coupled nonlinear Schrödinger equations. Phys. Rev. E 80, 066608 (2009)
[57] Liu, Y., Gao, Y.T., Xu, T., Lü, X., Sun, Z.Y., Meng, X.H., Yu, X., Gai, X.L.: Soliton solution, Bäcklund transformation, and conservation laws for the Sasa-Satsuma equation in the optical fiber communications. Z. Naturforsch. A 65, 291 (2010)
[58] Yu, X., Gao, Y.T., Sun, Z.Y., Liu, Y.: N-soliton solutions, Bäcklund transformation and Lax pair for a generalized variable-coefficient fifth-order Korteweg–de Vries equation. Phys. Scr. 81, 045402 (2010) · Zbl 1191.35242
[59] Serkin, V.N., Hasegawa, A., Belyaeva, T.L.: Nonautonomous solitons in external potentials. Phys. Rev. Lett. 98, 074102 (2007) · Zbl 1203.78042
[60] Lighthill, M.J.: Surveys in Mechanics. Cambridge University Press, Cambridge (1956) · Zbl 0073.41504
[61] Wu, L., Zhang, J.F., Li, L., Finot, C., Porsezian, K.: Similariton interactions in nonlinear graded-index waveguide amplifiers. Phys. Rev. A 78, 053807 (2008)
[62] Karlsson, M., Kaup, D.J., Malomed, B.A.: Interactions between polarized soliton pulses in optical fibers: exact solutions. Phys. Rev. E 54, 5802 (1996) · doi:10.1103/PhysRevE.54.5802
[63] Liu, W.J., Tian, B., Zhang, H.Q., Xu, T., Li, H.: Solitary wave pulses in optical fibers with normal dispersion and higher-order effects. Phys. Rev. A 79, 063810 (2009)
[64] Liu, W.J., Tian, B., Xu, T., Sun, K., Jiang, Y.: Solitary wave pulses in optical fibers with normal dispersion and higher-order effects. Ann. Phys. 325, 1633 (2010) · Zbl 1204.78015 · doi:10.1016/j.aop.2010.02.012
[65] Zhang, H.Q., Xu, T., Li, J., Tian, B.: Integrability of an N-coupled nonlinear Schrödinger system for polarized optical waves in an isotropic medium via symbolic computation. Phys. Rev. E 77, 026605 (2008)
[66] Zhang, H.Q., Tian, B., Lü, X., Li, H., Meng, X.H.: Soliton interaction in the coupled mixed derivative nonlinear Schrödinger equations. Phys. Lett. A 373, 4315 (2009) · Zbl 1234.35259 · doi:10.1016/j.physleta.2009.09.010
[67] Xu, T., Tian, B., Li, L.L., Lü, X., Zhang, C.: Dynamics of Alfvén solitons in inhomogeneous plasmas. Phys. Plasmas 15, 102307 (2008)
[68] Xu, T., Tian, B.: Bright N-soliton solutions in terms of the triple Wronskian for the coupled nonlinear Schrödinger equations in optical fibers. J. Phys. A 43, 245205 (2010) · Zbl 1191.81119
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.