×

Mixed convective boundary layer flow over a vertical cylinder embedded in a porous medium saturated with a nanofluid. (English) Zbl 1356.76343

Summary: Purpose{ } - The purpose of this work is to study the mixed convection boundary layer flow past a vertical cylinder in a porous medium saturated with a nanofluid. Numerical results for friction factor, surface heat transfer rate and mass transfer rate have been presented for parametric variations of the buoyancy ratio parameter Nr, Brownian motion parameter Nb, thermophoresis parameter Nt and Lewis number Le. The dependency of the surface heat transfer rate (Nusselt number) and mass transfer rate on these parameters has been discussed. { }Design/methodology/approach{ } - Solutions of the set of non-similarity equations are obtained by employing the implicit finite difference method together with Keller box elimination method. { }Findings{ } - It was found that the heat transfer rate decreases and mass transfer rates increase as Lewis number increases. The heat and mass transfer rates increase as the buoyancy ration parameter increases. As the thermophoresis parameter Nt increases, the heat transfer rate decreases where as the mass transfer rate increases. As the Brownian parameter Nb increases, the heat transfer rate decreases. Brownian motion decelerates the flow in the nanofluid boundary layer. Brownian diffusion promotes heat conduction. The heat and mass transfer rates increase as the buoyancy ratio number Nr increases. The Brownian motion and thermophoresis of nanoparticles increases the effective thermal conductivity of the nanofluid. Both Brownian diffusion and thermophoresis give rise to cross diffusion terms that are similar to the familiar Soret and Dufour cross-diffusion terms that arise with a binary fluid. { }Research limitations/implications{ } - The analysis is valid for steady, mixed convection two-dimensional boundary layer flow in a nanofluid-saturated Darcy porous medium. An extension to non-Darcy porous medium is left as a part of future study. { }Practical implications{ } - The research is applicable for enhancing heat exchanger effectiveness by employing nanofluids. { }Originality/value{ } - The study is useful to engineers interested in designing heat exchangers, water and atmospheric pollution.

MSC:

76S05 Flows in porous media; filtration; seepage
76R99 Diffusion and convection
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Bassom, A.P. and Rees, D.A.S. (1996), ”Free convection from a heated vertical cylinder in a fluid-saturated porous medium”, Acta Mechanica, Vol. 116, pp. 139-147. , · Zbl 0879.76093 · doi:10.1108/HFF-03-2012-0064
[2] Buongiorno, J. (2006), ”Convective transport in nanofluids”, J. Heat Transfer, Vol. 128, pp. 240-250. , · Zbl 1356.76343 · doi:10.1108/HFF-03-2012-0064
[3] Chamkha, A.J. (2003), ”MHD flow of a uniformly stretched vertical permeable surface in the presence of heat generation/absorption and a chemical reaction”, Int. Comm. Heat Mass Transfer, Vol. 30, pp. 413-422. , · Zbl 1356.76343 · doi:10.1108/HFF-03-2012-0064
[4] Chamkha, A.J. , El-Kabeir, S.M.M. and Rashad, A.M. (2011), ”Heat and mass transfer by non-Darcy free convection from a vertical cylinder embedded in porous media with a temperature-dependent viscosity”, Int. J. Numerical Methods in Heat and Fluid Flow, Vol. 21, pp. 847-863. , · Zbl 1356.76343 · doi:10.1108/HFF-03-2012-0064
[5] Chen, C.C. and Eichhorn, R. (1979), ”Natural convection from spheres and cylinders immersed in a thermally stratified fluid”, ASME J. Heat Transfer, Vol. 101, pp. 566-569. , · Zbl 1356.76343 · doi:10.1108/HFF-03-2012-0064
[6] Cheng, P. and Minkowycz, W.J. (1977), ”Free convection about a vertical flat plate embedded in a saturated porous medium with applications to heat transfer from a dike”, J. Geophysics. Res., Vol. 82, pp. 2040-2044. , · Zbl 1356.76343 · doi:10.1108/HFF-03-2012-0064
[7] Choi, S.U.S. (1995), ”Enhancing thermal conductivity of fluids with nanoparticles”, in Siginer, D.A. and Wang, H.P. (Eds), Development and Applications of Non-Newtonian Flows, FED-vol. 231/MD, Vol. 66, ASME, New York, NY, pp. 99-105.
[8] El-Hakiem, M.A. and Rashad, A.M. (2007), ”Effect of radiation on non-Darcy free convection from a vertical cylinder embedded in a fluid-saturated porous medium with a temperature-dependent viscosity”, J. Porous Media, Vol. 10, pp. 200-218.
[9] Gorla, R.S.R. and Tornabene, R. (1988), ”Free convection from a vertical plate with nonuniform surface heat flux and embedded in a porous medium”, Transport in Porous Media Journal, Vol. 3, pp. 95-106. , · Zbl 1356.76343 · doi:10.1108/HFF-03-2012-0064
[10] Gorla, R.S.R. and Zinolabedini, A. (1987), ”Free convection from a vertical plate with nonuniform surface temperature and embedded in a porous medium, transactions of ASME”, Journal of Energy Resources Technology, Vol. 109, pp. 26-30. , · Zbl 1356.76343 · doi:10.1108/HFF-03-2012-0064
[11] Hossain, M.A. and Rees, D.A.S. (1998), ”Radiation-conduction interaction on mixed convection flow along a slender vertical cylinder”, J. Thermophysics, Vol. 12, pp. 611-614. , · Zbl 1356.76343 · doi:10.1108/HFF-03-2012-0064
[12] Hossain, M.A. , Vafai, K. and Khafer, M.N. (1999), ”Non-Darcy natural convection heat transfer along a vertical permeable cylinder embedded in a porous medium”, Int. J. Therm. Sci., Vol. 38, pp. 854-862. · Zbl 1356.76343 · doi:10.1108/HFF-03-2012-0064
[13] Kakaç, S. , Özerinç, S. and Yazıcıoğlu, A.G. (2010), ”Enhanced thermal conductivity of nanofluids: a state-of-the-art review”, Microfluid Nanofluid, Vol. 8, pp. 145-170. , · Zbl 1356.76343 · doi:10.1108/HFF-03-2012-0064
[14] Lakshmi Narayana, P.A. , Murthy, P.V.S.N. and Gorla, R.S.R. (2008), ”Soret-driven thermosolutal convection induced by inclined thermal and solutal gradients in a shallow horizontal layer of a porous medium”, Journal of Fluid Mechanics, Vol. 612, pp. 1-19. · Zbl 1151.76460 · doi:10.1108/HFF-03-2012-0064
[15] Minkowycz, W.J. (1976), ”Free convection about a vertical cylinder embedded in a porous medium”, Int. J. Heat Mass Transfer, Vol. 19, pp. 805-813. , · Zbl 0325.76129 · doi:10.1108/HFF-03-2012-0064
[16] Murshed, S.M.S. , Leong, K.C. and Yang, C. (2008), ”Thermophysical and electrokinetic properties of nanofluids - a critical review”, Appl. Therm. Eng., Vol. 28, pp. 2109-2125. , · Zbl 1356.76343 · doi:10.1108/HFF-03-2012-0064
[17] Nield, D.A. and Kuznetsov, A.V. (2009a), ”The Cheng-Minkowycz problem for natural convective boundary layer flow in a porous medium saturated by a nanofluid”, International Journal of Heat and Mass Transfer, Vol. 52, pp. 5792-5795. , · Zbl 1177.80046 · doi:10.1108/HFF-03-2012-0064
[18] Nield, D.A. and Kuznetsov, A.V. (2009b), ”Thermal instability in a porous medium layer saturated by a nanofluid”, International Journal of Heat and Mass Transfer, Vol. 52, pp. 5796-5801. , · Zbl 1177.80047 · doi:10.1108/HFF-03-2012-0064
[19] Takhar, H.S. , Chamkha, A.J. and Nath, G. (2002), ”Natural convection on a vertical cylinder embedded in a thermally stratified high porosity medium”, Int. J. Thermal Sciences, Vol. 41, pp. 83-93. , · Zbl 1356.76343 · doi:10.1108/HFF-03-2012-0064
[20] Wang, X.Q. and Mujumdar, A.S. (2007), ”Heat transfer characteristics of nanofluids: a review”, Int. J. Therm. Sci., Vol. 46, pp. 1-19. , · Zbl 1356.76343 · doi:10.1108/HFF-03-2012-0064
[21] Yih, K.A. (1999), ”Radiation effect on natural convection over a vertical cylinder embedded in porous media”, Int. Comm. Heat Mass Transfer, Vol. 26, pp. 259-267. , · Zbl 1356.76343 · doi:10.1108/HFF-03-2012-0064
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.