zbMATH — the first resource for mathematics

An analog of the Rayleigh-Sommerfeld integral for anisotropic and gyrotropic media. (English) Zbl 1356.78091
Summary: In this work, the integral representations of Maxwell’s equations solutions for anisotropic and gyrotropic media with separable longitudinal and transverse components are derived in a complete analytic form. In particular cases, the integral expressions are reduced to an analog of the Rayleigh-Sommerfeld integral.

78A48 Composite media; random media in optics and electromagnetic theory
78A25 Electromagnetic theory (general)
Full Text: DOI
[1] DOI: 10.1364/JOSAA.20.000163
[2] DOI: 10.1103/PhysRevLett.96.163905
[3] DOI: 10.1364/OE.18.010848
[4] DOI: 10.1364/JOSA.73.000920
[5] DOI: 10.1364/JOSAA.18.001656
[6] DOI: 10.1103/PhysRevLett.99.073901
[7] DOI: 10.1364/OL.33.000696
[8] DOI: 10.1364/JOSAA.27.002188
[9] DOI: 10.1364/JOSAA.18.002846
[10] DOI: 10.1364/JOSAA.22.000361
[11] DOI: 10.1088/1464-4258/10/9/095005
[12] DOI: 10.1364/JOSAA.27.001828
[13] Yariv A., Optical Waves in Crystals (1984)
[14] Potehin A.I., Radiation and Distribution of Electromagnetic Waves in the Anisotropic Environment (1979)
[15] DOI: 10.1364/JOSA.66.000780
[16] Bleistein N., Asymptotic Expansions of Integrals (1975) · Zbl 0327.41027
[17] DOI: 10.1364/JOSAA.29.000486
[18] Born M., Principles of Optics, 7th (expanded) ed. (2003)
[19] DOI: 10.1364/AO.43.002242
[20] DOI: 10.1121/1.2950081
[21] DOI: 10.1117/3.714999
[22] DOI: 10.1364/AO.40.005693
[23] DOI: 10.1364/AO.42.004529
[24] DOI: 10.1088/1751-8113/40/21/020 · Zbl 1138.78310
[25] Nye, J.F.Physical Properties of Crystals. Their Representation by Tensors and Matrices; Oxford University Press: Oxford, 1964. · Zbl 0079.22601
[26] DOI: 10.1364/JOSAA.20.002163
[27] DOI: 10.3116/16091833/12/2/62/2011
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.