zbMATH — the first resource for mathematics

Aggregate production planning in the automotive industry with special consideration of workforce flexibility. (English) Zbl 1356.90078
Summary: We present a new mixed integer linear programming approach for the problem of aggregate production planning of flowshop production lines in the automotive industry. Our model integrates production capacity planning and workforce flexibility planning. In contrast to traditional approaches, it considers discrete capacity adaptations which originate from technical characteristics of assembly lines as well as from work regulations and shift planning. In particular, our approach takes change costs into account and explicitly represents a working time account via a linear approximation. A solution framework containing different primal heuristics and preprocessing techniques is embedded into a decision support system. Finally, we present an illustrative case study and computational results on problem instances of practically relevant complexity.

90B90 Case-oriented studies in operations research
90B30 Production models
Full Text: DOI
[1] DOI: 10.1007/978-3-7908-1921-2_12 · doi:10.1007/978-3-7908-1921-2_12
[2] Askar G, Operations research proceedings 2006 pp 479– (2006)
[3] DOI: 10.1007/978-3-7908-1760-7_3 · doi:10.1007/978-3-7908-1760-7_3
[4] Becker H, High noon in the automotive industry (2006)
[5] DOI: 10.1016/S0925-5273(03)00120-8 · doi:10.1016/S0925-5273(03)00120-8
[6] DOI: 10.1108/01443570510626907 · doi:10.1108/01443570510626907
[7] DOI: 10.1016/S0360-8352(96)00227-6 · doi:10.1016/S0360-8352(96)00227-6
[8] DOI: 10.1016/j.ejor.2005.04.017 · Zbl 1110.90069 · doi:10.1016/j.ejor.2005.04.017
[9] DOI: 10.1080/00207548908942616 · doi:10.1080/00207548908942616
[10] Hanssmann F, Management Technology 1 pp 110– (1960)
[11] DOI: 10.1287/mnsc.2.2.159 · Zbl 0995.90548 · doi:10.1287/mnsc.2.2.159
[12] DOI: 10.1287/mnsc.2.1.1 · doi:10.1287/mnsc.2.1.1
[13] DOI: 10.1080/09537280410001724287 · doi:10.1080/09537280410001724287
[14] DOI: 10.1007/s00291-004-0168-4 · Zbl 1069.90033 · doi:10.1007/s00291-004-0168-4
[15] DOI: 10.1016/0377-2217(92)90356-E · doi:10.1016/0377-2217(92)90356-E
[16] DOI: 10.1016/0305-0548(94)00034-6 · Zbl 0833.90063 · doi:10.1016/0305-0548(94)00034-6
[17] Ning Y, World Journal of Modelling and Simulation 2 pp 312– (2006)
[18] DOI: 10.1016/0305-0548(89)90048-8 · doi:10.1016/0305-0548(89)90048-8
[19] DOI: 10.1287/mnsc.9.1.108 · doi:10.1287/mnsc.9.1.108
[20] Pochet Y, Production planning by mixed integer programming, Springer series in operation research and financial engineering (2006)
[21] DOI: 10.1016/j.omega.2004.08.007 · doi:10.1016/j.omega.2004.08.007
[22] DOI: 10.1287/opre.51.3.487.14949 · Zbl 1163.90474 · doi:10.1287/opre.51.3.487.14949
[23] DOI: 10.1287/mnsc.14.6.B343 · doi:10.1287/mnsc.14.6.B343
[24] Turban E, Decision support systems and intelligent systems,, 5. ed. (1998) · Zbl 0853.68144
[25] DOI: 10.1016/j.ijpe.2004.09.011 · doi:10.1016/j.ijpe.2004.09.011
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.