×

zbMATH — the first resource for mathematics

New hybrid conjugate gradient projection method for the convex constrained equations. (English) Zbl 1357.65078
The authors develop a new hybrid conjugate gradient projection method for convex constrained equations. Furthermore, they prove the global convergence of the new method under some mild assumptions. Some large-scale numerical experiments are provided to indicate the competitiveness of the method used in this paper.

MSC:
65K05 Numerical mathematical programming methods
90C30 Nonlinear programming
90C25 Convex programming
Software:
MCPLIB
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Meintjes, K; Morgan, AP, A methodology for solving chemical equilibrium systems, Appl. Math. Comput., 22, 333-361, (1987) · Zbl 0616.65057
[2] Dirkse, SP; Ferris, MC, MCPLIB: a collection of nonlinear mixed complementarity problems, Optim. Methods Softw., 5, 319-345, (1995)
[3] Xiao, YH; Zhu, H, A conjugate gradient method to solve convex constrained monotone equations with applications in compressive sensing, J. Math. Anal. Appl., 405, 310-319, (2013) · Zbl 1316.90050
[4] Han, DR, A proximal decomposition algorithm for variational inequality problems, J. Comput. Appl. Math., 161, 231-244, (2003) · Zbl 1041.65053
[5] Wang, CW; Wang, YJ; Xu, CL, A projection method for a system of nonlinear monotone equations with convex constraints, Math. Methods Oper. Res., 66, 33-46, (2007) · Zbl 1126.90067
[6] Zhang, L; Zhou, WJ, Spectral gradient projection method for solving nonlinear monotone equations, J. Comput. Appl. Math., 196, 478-484, (2006) · Zbl 1128.65034
[7] Cheng, WY, A PRP type method for systems of monotone equations, Math. Comput. Model., 50, 15-20, (2009) · Zbl 1185.65088
[8] Yu, ZS; Lin, J; Sun, J; Xiao, YH; Liu, LY; Li, ZH, Spectral gradient projection method for monotone nonlinear equations with convex constraints, Appl. Numer. Math., 59, 2416-2423, (2009) · Zbl 1183.65056
[9] Liu, S.Y., Huang, Y.Y, Jiao, H.W.: Sufficient descent conjugate gradient methods for solving convex constrained nonlinear monotone equations. Abstr. Appl. Anal. 2014, 12 (2014) · Zbl 07022130
[10] Sun, M; Liu, J, Three derivative-free projection methods for large-scale nonlinear equations with convex constraints, J. Appl. Math. Comput., 47, 265-276, (2015) · Zbl 1348.90630
[11] Fletcher, R; Reeves, C, Function minimization by conjugate gradients, J. Comput., 7, 149-154, (1964) · Zbl 0132.11701
[12] Polak, B; Ribière, G, Note surla convergence des méthodes de directions conjuguées, Rev. Francaise Imformat Rech. Opertionelle, 16, 35-43, (1969) · Zbl 0174.48001
[13] Gilber, JC; Nocedal, J, Global convergence properties of conjugate gradient methods for optimization, SIAM J. Optim., 2, 21-42, (1992) · Zbl 0767.90082
[14] Hestenes, MR; Stiefel, EL, Method of conjugate gradient for solving linear systems, J. Res. Natl. Bur. Stand., 49, 409-432, (1952) · Zbl 0048.09901
[15] Dai, YH; Yuan, YX, A nonlinear conjugate gradient method with a strong global convergence property, SIAM J. Optim., 10, 177-182, (2000) · Zbl 0957.65061
[16] Jian, JB; Han, L; Jiang, XZ, A hybrid conjugate gradient method with descent property for unconstrained optimization, Appl. Math. Model., 39, 1281-1290, (2015)
[17] Hu, Y.P., Wei, Z.X.: Wei-Yao-Liu conjugate gradient projection algorithm for nonlinear monotone equations with convex constraints. Int. J. Comput. Math. (2014). doi:10.1080/00207160.2014.977879 · Zbl 1335.90067
[18] Wang, X.Y., Li, S.J., Kou, X.P.: A self-adaptive three-term conjugate gradient method for monotone nonlinear equations with convex constraints. Calcolo (2015). doi:10.1007/s10092-015-0140-5 · Zbl 1338.90459
[19] Wei, ZX; Yao, SW; Liu, LY, The convergence properties of some new conjugate gradient methods, Appl. Math. Comput., 183, 1341-1350, (2006) · Zbl 1116.65073
[20] Yao, SW; Wei, ZX; Huang, H, A note about WYL’s conjugate gradient method and its application, Appl. Math. Comput., 191, 381-388, (2007) · Zbl 1193.90213
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.