×

Homotopy analysis method for space- and time-fractional KdV equation. (English) Zbl 1357.65221

Summary: Purpose{ } - The purpose of this paper is to present numerical solutions for the space- and time-fractional Korteweg-de Vries (KdV) equation using homotopy analysis method (HAM). The space and time-fractional derivatives are described in the Caputo sense. The paper witnesses the extension of HAM for fractional KdV equations.{ }Design/methodology/approach{ } - This paper presents numerical solutions for the space- and time-fractional KdV equation using HAM. The space and time-fractional derivatives are described in the Caputo sense.{ }Findings{ } - In this paper, the application of homotopy analysis method was extended to obtain explicit and numerical solutions of the time- and space-fractional KdV equation with initial conditions. The homotopy analysis method was clearly a very efficient and powerful technique in finding the solutions of the proposed equations.{ }Originality/value{ } - In this paper, the application of HAM was extended to obtain explicit and numerical solutions of the time- and space-fractional KdV equation with initial conditions. The HAM was clearly very efficient and powerful technique in finding the solutions of the proposed equations. The obtained results demonstrate the reliability of the algorithm and its wider applicability to fractional nonlinear evolution equations. Finally, the recent appearance of nonlinear fractional differential equations as models in some fields such as the thermal diffusion in fractal media makes it necessary to investigate the method of solutions for such equations and the authors hope that this paper is a step in this direction.

MSC:

65M99 Numerical methods for partial differential equations, initial value and time-dependent initial-boundary value problems
35Q53 KdV equations (Korteweg-de Vries equations)
35R11 Fractional partial differential equations
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Abbasbandy, S. (2006), ”The application of the homotopy analysis method to nonlinear equations arising in heat transfer”, Phys. Lett. A, Vol. 360, pp. 109-13. , · Zbl 1236.80010 · doi:10.1108/09615531211255798
[2] Abbasbandy, S. (2007a), ”Approximate solution for the nonlinear model of diffusion and reaction in porous catalysts by means of the homotopy analysis method”, Chem. Eng. J., Vol. 136 Nos 2/3, pp. 144-50. · Zbl 1357.65221 · doi:10.1108/09615531211255798
[3] Abbasbandy, S. (2007b), ”Homotopy analysis method for heat radiation equations”, Int. Commun. Heat Mass Transfer, Vol. 34, pp. 380-7. , · Zbl 1357.65221 · doi:10.1108/09615531211255798
[4] Abbasbandy, S. (2007c), ”The application of homotopy analysis method to solve a generalized Hirota-Satsuma coupled KdV equation”, Phys. Lett. A, Vol. 361, pp. 478-83. , · Zbl 1273.65156 · doi:10.1108/09615531211255798
[5] Ayub, M., Rasheed, A. and Hayat, T. (2003), ”Exact flow of a third grade fluid past a porous plate using homotopy analysis method”, Int. J. Eng. Sci., Vol. 41, pp. 2091-103. , · Zbl 1211.76076 · doi:10.1108/09615531211255798
[6] Bataineh, A.S., Noorani, M.S.M. and Hashim, I. (2008), ”Solving systems of ODEs by homotopy analysis method”, Commun. Nonlinear Sci. Numer. Sim., Vol. 13 No. 10, pp. 2060-70. , · Zbl 1221.65194 · doi:10.1108/09615531211255798
[7] Caputo, M. (1967), ”Linear models of dissipation whose Q is almost frequency independent, part II”, J. Roy. Astr. Soc., Vol. 13, p. 529. , · Zbl 1357.65221 · doi:10.1108/09615531211255798
[8] Hasham, I., Abdulaziz, O. and Momani, S. (2009), ”Homotopy analysis method for fractional IVPs”, Commun. Nonlinear Sci. Numer. Sim., Vol. 14 No. 3, pp. 674-84. , · Zbl 1221.65277 · doi:10.1108/09615531211255798
[9] Hayat, T., Khan, M. and Asghar, S. (2004), ”Homotopy analysis of MHD flows of an Oldroyd 8-constant fluid”, Acta Mech., Vol. 168, pp. 213-32. , · Zbl 1063.76108 · doi:10.1108/09615531211255798
[10] Liang, S. and Jeffrey, D.J. (2009), ”Comparison of homotopy analysis method and homotopy perturbation method through an evolution equation”, Commun. Nonlinear Sci. Numer. Sim., Vol. 14, pp. 4057-64. , · Zbl 1221.65281 · doi:10.1108/09615531211255798
[11] Liao, S.J. (1992a), ”The proposed homotopy analysis technique for the solution of nonlinear problems”, PhD thesis, Shanghai Jiao Tong University.
[12] Liao, S.J. (1992b), ”On the proposed homotopy analysis techniques for nonlinear problems and its application”, PhD dissertation, Shanghai Jiao Tong University.
[13] Liao, S.J. (1995), ”An approximate solution technique which does not depend upon small parameters: a special example”, Int. J. Nonlinear Mech., Vol. 30, pp. 371-80. , · Zbl 1357.65221 · doi:10.1108/09615531211255798
[14] Liao, S.J. (1997), ”An approximate solution technique which does not depend upon small parameters (II): an application in fluid mechanics”, Int. J. Nonlinear Mech., Vol. 32, pp. 815-22. , · Zbl 1031.76542 · doi:10.1108/09615531211255798
[15] Liao, S.J. (1999a), ”A uniformly valid analytic solution of 2D viscous flow past a semi-infinite flat plate”, J. Fluid Mech., Vol. 385, pp. 101-28. , · Zbl 0931.76017 · doi:10.1108/09615531211255798
[16] Liao, S.J. (1999b), ”An explicit, totally analytic approximation of Blasius viscous flow problems”, Int. J. Nonlinear Mech., Vol. 34 No. 4, pp. 759-78. , · Zbl 1342.74180 · doi:10.1108/09615531211255798
[17] Liao, S.J. (2003a), Beyond Perturbation: Introduction to the Homotopy Analysis Method, CRC Press, Boca Raton, FL.
[18] Liao, S.J. (2003b), ”On the analytic solution of magnetohydrodynamic flows of non-Newtonian fluids over a stretching sheet”, J. Fluid Mech., Vol. 488, pp. 189-212. , · Zbl 1063.76671 · doi:10.1108/09615531211255798
[19] Liao, S.J. (2004), ”On the homotopy analysis method for nonlinear problems”, Appl. Math. Comput., Vol. 147, pp. 499-513. , · Zbl 1086.35005 · doi:10.1108/09615531211255798
[20] Liao, S.J. and Campo, A. (2002), ”Analytic solutions of the temperature distribution in Blasius viscous flow problems”, J. Fluid Mech., Vol. 453, pp. 411-25. , · Zbl 1007.76014 · doi:10.1108/09615531211255798
[21] Luchko, Y. and Gorneflo, R. (1998), ”The initial value problem for some fractional differential equations with the Caputo derivative”, Preprint Series No. A-98-08, Fachbreich Mathematik und Informatik, Freic Universitat Berlin.
[22] Ma, W.X. (2002), ”Complexiton solutions to the Korteweg-de Vries equation”, Phys. Lett. A, Vol. 301, pp. 35-44. , · Zbl 0997.35066 · doi:10.1108/09615531211255798
[23] Ma, W.X. and Fuchssteiner, B. (1996), ”Explicit and exact solutions of Kolmogorov-Petrovskii-Piskunov equation”, Int. J. Nonlinear Mech., Vol. 31 No. 3, pp. 329-38. , · Zbl 0863.35106 · doi:10.1108/09615531211255798
[24] Ma, W.X. and You, Y. (2004a), ”Rational solutions of the Toda lattice equation in Casoratian form”, Chaos, Solitons & Fractals, Vol. 22, pp. 395-406. , · Zbl 1090.37053 · doi:10.1108/09615531211255798
[25] Ma, W.X. and You, Y. (2004b), ”Solving the Korteweg-de Vries equation by its bilinear form: Wronskian solutions”, Transactions of the American Mathematical Society, Vol. 357, pp. 1753-78. , · Zbl 1062.37077 · doi:10.1108/09615531211255798
[26] Ma, W.X., Wu, H.Y. and He, J.S. (2007), ”Partial differential equations possessing Frobenius integrable decompositions”, Phys. Lett. A, Vol. 364, pp. 29-32. , · Zbl 1203.35059 · doi:10.1108/09615531211255798
[27] Miller, K.S. and Ross, B. (1993), An Introduction to the Fractional Calculus and Fractional Differential Equations, Wiley, New York, NY. · Zbl 0789.26002
[28] Mohyud-Din, S.T. and Yildirim, A. (2010), ”The numerical solution of three dimensional Helmholtz equation”, Chinese Physics Letters, Vol. 27 No. 6, p. 060201. , · Zbl 1360.65256 · doi:10.1108/09615531211255798
[29] Odibat, Z., Momani, S. and Xu, H. (2010), ”A reliable algorithm of homotopy analysis method for solving nonlinear fractional differential equations”, Applied Mathematical Modeling, Vol. 34 No. 3, pp. 593-600. , · Zbl 1185.65139 · doi:10.1108/09615531211255798
[30] Sajid, M. and Hayat, T. (2008), ”Comparison of HAM and HPM methods in nonlinear heat conduction and convection equations”, Nonlinear Analysis: Real World Applications, Vol. 9 No. 5, pp. 2296-301. , · Zbl 1156.76436 · doi:10.1108/09615531211255798
[31] Samko, S.G., Kilbas, A.A. and Marichev, O.I. (1993), Fractional Integrals and Derivatives: Theory and Applications, Gordon and Breach, Yverdon. · Zbl 0818.26003
[32] Song, L. and Zhang, H. (2007), ”Application of homotopy analysis method to fractional KdV-Burgers-Kuramato equation”, Phys. Lett. A, Vol. 367 Nos 1/2, pp. 88-94. , · Zbl 1209.65115 · doi:10.1108/09615531211255798
[33] Gardner, C.S., Greene, J.M., Kruskal, M.D. and Miura, R.M. (1974), ”Korteweg-de Vries equation and generalizations. IV. Method for exact solution”, Commun. Pure Appl. Math., Vol. XXVII, pp. 97-133. , · Zbl 0291.35012 · doi:10.1108/09615531211255798
[34] Kaya, D. (1999), ”On the solution of a KdV like equation by the decomposition method”, Int. J. Comput. Math., Vol. 72, pp. 531-9. , · Zbl 0948.65104 · doi:10.1108/09615531211255798
[35] Kaya, D. and Aassila, M. (2002), ”An application for a generalized KdV equation by the decomposition method”, Phys. Lett. A, Vol. 299, pp. 201-6. , · Zbl 0996.35061 · doi:10.1108/09615531211255798
[36] Khater, A.H., Helal, M.A. and El-Kalaawy, O.H. (1998), ”Backland transformation: exact solutions for the KdV and the Calogera-Degasperis-Fokas mKdV equations”, Math. Meth. Appl. Sci., Vol. 21, pp. 713-19. · Zbl 0910.35114 · doi:10.1108/09615531211255798
[37] Momani, S. (2005), ”An explicit and numerical solutions of the fractional KdV equation”, Math. Comput. Sim., Vol. 70, pp. 110-18. , · Zbl 1119.65394 · doi:10.1108/09615531211255798
[38] Podlubny, I. (1999), Fractional Differential Equations, Academic Press, San Diego, CA. · Zbl 0924.34008
[39] Rasulov, M. and Coskun, E. (1999), ”An efficient numerical method for solving KdV equation by a class of discontinuous functions”, Appl. Math. Comput., Vol. 102, pp. 139-54. , · Zbl 0933.65102 · doi:10.1108/09615531211255798
[40] Taha, T.R. and Ablowitz, M.J. (1984), ”Analytical and numerical aspects of certain nonlinear evolution equations. III. Numerical, Korteweg-de Vries equation”, J. Comput. Phys., Vol. 55, pp. 231-53. , · Zbl 0541.65083 · doi:10.1108/09615531211255798
[41] Wang, Q. (2007), ”Homotopy perturbation method for fractional KdV equation”, Appl. Math. Comput., Vol. 190, pp. 1795-802. , · Zbl 1122.65397 · doi:10.1108/09615531211255798
[42] West, B.J., Bolognab, M. and Grigolini, P. (2003), Physics of Fractal Operators, Springer, New York, NY.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.