zbMATH — the first resource for mathematics

Strong equivalence of RASP programs. (English) Zbl 1357.68030
Erdem, Esra (ed.) et al., Correct reasoning. Essays on logic-based AI in honour of Vladimir Lifschitz. Berlin: Springer (ISBN 978-3-642-30742-3/pbk). Lecture Notes in Computer Science 7265, 149-163 (2012).
Summary: RASP is a recent extension of answer set programming (ASP) that permits declarative specification and reasoning on consumption and production of resources. In this paper, we extend the concept of strong equivalence (which, as widely recognized, provides an important conceptual and practical tool for program simplification, transformation and optimization) from ASP to RASP programs and discuss its applicability, usefulness and implications in this wider context.
For the entire collection see [Zbl 1241.68016].

68N17 Logic programming
PDF BibTeX Cite
Full Text: DOI
[1] Baader, F., Calvanese, D., McGuinness, D., Nardi, D., Patel-Schneider, P.: The Description Logic Handbook. Cambridge University Press (2003) · Zbl 1058.68107
[2] Chintabathina, S., Gelfond, M., Watson, R.: Defeasible laws, parallel actions, and reasoning about resources. In: Amir, E., Lifschitz, V., Miller, R. (eds.) Logical Formalizations of Commonsense Reasoning: Proceedings of CommonSense 2007. AAAI Press, Menlo Park (2007); Technical report SS-07-05
[3] Costantini, S., Formisano, A.: Modeling preferences and conditional preferences on resource consumption and production in ASP. Journal of Algorithms in Cognition, Informatics and Logic 64(1), 3–15 (2009) · Zbl 1182.68037
[4] Costantini, S., Formisano, A.: Answer set programming with resources. Journal of Logic and Computation 20(2), 533–571 (2010) · Zbl 1200.68065
[5] Costantini, S., Formisano, A., Petturiti, D.: Extending and implementing RASP. Fundamenta Informaticae 105(1-2), 1–33 (2010) · Zbl 1211.68059
[6] Costantini, S., Formisano, A., Petturiti, D.: Strong Equivalence for RASP Programs: Long Version. Tech. Rep. 02-2012 Dip. di Matematica e Informatica, Univ. di Perugia, http://www.dmi.unipg.it/formis/papers/report2012_02.ps.gz · Zbl 1211.68059
[7] Gelfond, M.: Answer sets. In: Handbook of Knowledge Representation, ch.7. Elsevier (2007)
[8] Gelfond, M., Lifschitz, V.: The stable model semantics for logic programming. In: Kowalski, R., Bowen, K. (eds.) Proc. of the 5th Intl. Conference and Symposium on Logic Programming, pp. 1070–1080. The MIT Press (1988)
[9] Gelfond, M., Lifschitz, V.: Action languages. Electronic Transactions on AI 3(16), 193–210 (1998)
[10] Girard, J.-Y.: Linear logic. Theoretical Computer Science 50, 1–102 (1987) · Zbl 0625.03037
[11] Lifschitz, V., Pearce, D., Valverde, A.: Strongly equivalent logic programs. ACM Transactions on Computational Logic 2, 526–541 (2001) · Zbl 1365.68149
[12] Niemelä, I., Simons, P., Soininen, T.: Stable Model Semantics of Weight Constraint Rules. In: Gelfond, M., Leone, N., Pfeifer, G. (eds.) LPNMR 1999. LNCS (LNAI), vol. 1730, pp. 317–331. Springer, Heidelberg (1999) · Zbl 0952.68029
[13] Pearce, D.: A New Logical Characterization of Stable Models and Answer Sets. In: Dix, J., Przymusinski, T.C., Moniz Pereira, L. (eds.) NMELP 1996. LNCS (LNAI), vol. 1216, pp. 55–70. Springer, Heidelberg (1997)
[14] Pearce, D., Valverde, A.: Synonymous theories in answer set programming and equilibrium logic. In: Proc. of 16th Europ. Conf. on Art. Intell., ECAI 2004, pp. 388–390 (2004)
[15] Pearce, D., Valverde, A.: Quantified equilibrium logic and the first order logic of here-and-there. Technical report, Univ. Rey Juan Carlos (2006), http://www.satd.uma.es/matap/investig/tr/ma06_02.pdf
[16] Soininen, T., Niemelä, I.: Developing a Declarative Rule Language for Applications in Product Configuration. In: Gupta, G. (ed.) PADL 1999. LNCS, vol. 1551, pp. 305–319. Springer, Heidelberg (1999)
[17] Soininen, T., Niemelä, I., Tiihonen, J., Sulonen, R.: Representing configuration knowledge with weight constraint rules. In: Proceedings of the AAAI Spring 2001 Symposium on Answer Set Programming (ASP 2001): Towards Efficient and Scalable Knowledge. AAAI Press, Menlo Park (2001); Technical report SS-01-01
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.