zbMATH — the first resource for mathematics

Algorithms for polycyclic-by-finite groups. (English) Zbl 1358.20005
Summary: A set of fundamental algorithms for computing with polycyclic-by-finite groups is presented.
Polycyclic-by-finite groups arise naturally in a number of contexts; for example, as automorphism groups of large finite soluble groups, as quotients of finitely presented groups, and as extensions of modules by groups. No existing mode of representation is suitable for these groups, since they will typically not have a convenient faithful permutation representation.
A mixed mode is used to represent elements of such a group, utilising either a power-conjugate presentation or a polycyclic presentation for the elements of the normal subgroup, and a permutation representation for the elements of the quotient.

20-04 Software, source code, etc. for problems pertaining to group theory
20F05 Generators, relations, and presentations of groups
68W30 Symbolic computation and algebraic computation
PDF BibTeX Cite
Full Text: DOI
[1] Baumslag, G.; Cannonito, F. B.; Robinson, D. J.S.; Segal, D., The algorithmic theory of polycyclic-by-finite groups, J. Algebra, 142, 118-149, (1991) · Zbl 0774.20019
[2] Dixon, J. D., Exact solution of linear equations using p-adic expansion, Numer. Math., 40, 137-141, (1982) · Zbl 0492.65016
[3] Eick, B., Algorithms for polycyclic groups, (2001), Universität Kassel, Habilitationsschrift
[4] Glasby, S. P.; Slattery, M. C., Computing intersections and normalizers in soluble groups, J. Symb. Comput., 9, 637-651, (1990) · Zbl 0707.20001
[5] Haramoto, H.; Matsumoto, M., A p-adic algorithm for computing the inverse of integer matrices, J. Comput. Appl. Math., 225, 320-322, (2009) · Zbl 1166.65328
[6] Holt, D. F.; Eick, B.; O’Brien, E. A., Handbook of computational group theory, Discrete Mathematics and Its Applications, (2005), Chapman & Hall/CRC · Zbl 1091.20001
[7] Hulpke, A., Computing conjugacy classes of elements in matrix groups, J. Algebra, 387, 268-286, (2013) · Zbl 1286.20066
[8] Laue, R.; Neubüser, J.; Schoenwaelder, U., Algorithms for finite soluble groups and the SOGOS system, (Atkinson, M. D., Computational Group Theory, (1984), Academic Press), 105-135 · Zbl 0547.20012
[9] Mecky, M.; Neubüser, J., Some remarks on the computation of conjugacy classes of soluble groups, Bull. Aust. Math. Soc., 40, 281-292, (1989) · Zbl 0683.20001
[10] Seress, Á., Permutation group algorithms, Cambridge Tracts in Mathematics, vol. 152, (2003), Cambridge University Press · Zbl 1028.20002
[11] Sims, C. C., Computational methods in the study of permutation groups, (Leech, J., Computational Problems in Abstract Algebra, (1970), Pergamon Press Oxford), 169-183 · Zbl 0215.10002
[12] Sims, C. C., Computation with permutation groups, (Proc. Second Symposium on Symbolic and Algebraic Manipulation, (1971), ACM Press New York), 23-28 · Zbl 0449.20002
[13] Sims, C. C., Computation with finitely presented groups, Encyclopedia of Mathematics and Its Applications, vol. 48, (1994), Cambridge University Press · Zbl 0828.20001
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.