zbMATH — the first resource for mathematics

A derivative-free approach to constrained multiobjective nonsmooth optimization. (English) Zbl 1358.90133

90C30 Nonlinear programming
90C56 Derivative-free methods and methods using generalized derivatives
65K05 Numerical mathematical programming methods
49J52 Nonsmooth analysis
Full Text: DOI
[1] C. Audet, G. Savard, and W. Zghal, Multiobjective optimization through a series of single-objective formulations, SIAM J. Optim., 19 (2008), pp. 188–210. · Zbl 1167.90020
[2] S. Bandyopadhyay, S. K. Pal, and B. Aruna, Multiobjective GAs, quantitative indices, and pattern classification, IEEE Trans. Syst. Man Cybernet. Part B Cybernet. 34 (2004), pp. 2088–2099.
[3] F. H. Clarke, Optimization and Nonsmooth Analysis, Wiley, New York, 1983. · Zbl 0582.49001
[4] A. Conn, K. Scheinberg, and L. N. Vicente, Introduction to Derivative-Free Optimization, MPS-SIAM Ser. Optim. 8, SIAM, Philadelphia, 2009. · Zbl 1163.49001
[5] A. L. Custódio, M. Emmerich, and J. F. A. Madeira, Recent developments in derivative-free multiobjective optimization, Comput. Technol. Rev., 5 (2012), pp. 1–30.
[6] A. L. Custódio, J. F. A. Madeira, A. I. F. Vaz, and L. N. Vicente, Errata to Direct Multisearch for Multiobjective Optimization, .
[7] A. L. Custódio, J. F. A. Madeira, A. I. F. Vaz, and L. N. Vicente, Direct multisearch for multiobjective optimization, SIAM J. Optim., 21 (2011), pp. 1109–1140. · Zbl 1230.90167
[8] K. Deb, A. Pratap, S. Agarwal, and T. A. M. T. Meyarivan, A fast and elitist multiobjective genetic algorithm: IEEE Trans. Evol. Comput., 6 (2002), pp. 182–197.
[9] E. D. Dolan and J. J. Moré, Benchmarking optimization software with performance profiles, Math. Program., 91 (2002), pp. 201–213. · Zbl 1049.90004
[10] G. Fasano, G. Liuzzi, S. Lucidi, and F. Rinaldi, A linesearch-based derivative-free approach for nonsmooth constrained optimization, SIAM J. Optim., 24 (2014), pp. 959–992. · Zbl 1302.90207
[11] E. H. Fukuda, L. M. Gran͂a Drummond, and F. M. P. Raupp, An external penalty-type method for multicriteria, TOP, 24 (2016), pp. 493–513. · Zbl 1368.90141
[12] T. Glad and E. Polak, A multiplier method with automatic limitation of penalty growth, Math. Program., 17 (1979), pp. 140–155. · Zbl 0414.90078
[13] J. B. Hiriart-Urruty, On optimality conditions in nondifferentiable programming, Math. Program., 14 (1978), pp. 73–86.
[14] X. X. Huang and X. Q. Yang, Nonlinear Lagrangian for multiobjective optimization and applications to duality and exact penalization, SIAM J. Optim., 13 (2002), pp. 675–692. · Zbl 1036.90062
[15] Y. Ishizuka and K. Shimizu, Necessary and sufficient conditions for the efficient solutions of nondifferentiable multiobjective problems, IEEE Trans. Syst. Man Cybernet., SMC-14 (1984), pp. 624–629. · Zbl 0553.90094
[16] J. Jahn, Introduction to the Theory of Nonlinear Optimization, Springer, Berlin, 1996. · Zbl 0855.49001
[17] J. Jahn, Vector Optimization, Springer, Berlin, 2009. · Zbl 1209.90352
[18] N. Karmitsa, Test Problems for Large-Scale Nonsmooth Minimization, Technical report No., B. 4/2007, Department of Mathematical Information Technology, University of Jyväskylä, Jyväskylä, Finland, 2007.
[19] C.-J. Lin, S. Lucidi, L. Palagi, A. Risi, and M. Sciandrone, Decomposition algorithm model for singly linearly-constrained problems subject to lower and upper bounds, J. Optim. Theory Appl., 141 (2009), pp. 107–126. · Zbl 1168.90556
[20] G. Liuzzi, S. Lucidi, F. Parasiliti, and M. Villani, Multiobjective optimization techniques for the design of induction motors, IEEE Trans. Magnet., 39 (2003), pp. 1261–1264.
[21] S. Lucidi, New results on a continuously differentiable exact penalty function, SIAM J. Optim., 2 (1992), pp. 558–574. · Zbl 0761.90089
[22] O. L. Mangasarian, Nonlinear Programming, Classics Appl. Math., SIAM, Philadelphia, 1994.
[23] K. Shimizu, Y. Ishizuka, and J. F. Bard, Nondifferentiable and Two-level Mathematical Programming, Kluwer, Norwell, MA, 1997. · Zbl 0878.90088
[24] A. Suppapitnarm, K. A. Seffen, G. T. Parks, and P. J. Clarkson, A simulated annealing algorithm for multiobjective optimization, Eng. Optim., 33 (2000), pp. 59–85.
[25] E. Zitzler and L. Thiele, Multiobjective Optimization using Evolutionary Algorithms — A Comparative Case Study, in Parallel Problem Solving from Nature — PPSN V: 5th International Conference Amsterdam, The Netherlands, A. E. Eiben, T. Bäck, M. Schoenauer, and H.-P. Schwefel, eds., Springer, Berlin 1998, pp. 292–301.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.