×

Application of weight functions in nonlinear analysis of structural dynamics problems. (English) Zbl 1359.74123

Summary: This paper presents a weighted residual method with several weight functions for solving differential equation of motion in nonlinear structural dynamics problems. Order of variation of acceleration is assumed to be quadratic in each time step in which polynomial of displacement would contain five unknown coefficients. Five equations are required for determination of these coefficients in each time step. These equations are obtained from initial conditions, satisfying equation of motions at both ends, and weighted residual integration. In this study, four procedures are considered for weight function to be used in the weighted residual integration as; unit weight function, Petrov-Galerkin’s weight function, least square weight function, and collocation weight function. Due to higher order of acceleration in the proposed method, the results indicate better and more accurate responses. Among the tested functions, the unit weighted function method demonstrated to be non-dissipative and its numerical dispersion showed to be clearly less than the common Newmark’s linear acceleration method. Also critical time step duration in stability investigation for weighted function procedure showed to be larger than the critical time step duration obtained by other methods used in the nonlinear structural dynamics problems.

MSC:

74H15 Numerical approximation of solutions of dynamical problems in solid mechanics
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Baluch, M. H., Mohsen, M. F. N. and Ali, A. I. [1983] ” Method of weighted residuals as applied to nonlinear differential equations,” Appl. Math. Model.7(5), 362-365. genRefLink(16, ’S0219876216500055BIB001’, ’10.1016
[2] Bathe, K. J. [1996] Finite Element Procedures (Prentice-Hall, Englewood Cliffs, New Jersey). · Zbl 0994.74001
[3] Bathe, K. J. and Wilson, E. L. [1973] ” Stability and accuracy analysis of direct time integration methods,” Earthquake Eng. Struct. Dyn.1, 283-291. genRefLink(16, ’S0219876216500055BIB003’, ’10.1002
[4] Bert, C. W. and Stricklin, J. D. [1988] ” Comparative evaluation of six different numerical methods for non-linear dynamic systems,” J. Sound Vibration127(2), 221-229. genRefLink(16, ’S0219876216500055BIB004’, ’10.1016
[5] Chang, S. Y. [2007] ” Improved explicit method for structural dynamics, ASCE,” J. Eng. Mech.133(7), 748-760. genRefLink(16, ’S0219876216500055BIB005’, ’10.1061
[6] Chang, S. Y. [2009] ” Accurate integration of nonlinear systems using Newmark explicit method,” J. Mech.25(3), 289-297. genRefLink(16, ’S0219876216500055BIB006’, ’10.1017
[7] Chang, S. Y. [2015] ” Comparisons of structure-dependent explicit methods for time integration,” Int. J. Struct. Stability Dyn.15(3), 1450055-1-20. [Abstract] genRefLink(128, ’S0219876216500055BIB007’, ’000351014400008’); · Zbl 1359.74469
[8] Dokainish, M. A. and Subbaraj, K. [1989] ” A survey of direct time integration methods in computational structural dynamics. I. Explicit methods,” Computers Struct.32(6), 1371-1386. genRefLink(16, ’S0219876216500055BIB008’, ’10.1016 · Zbl 0702.73072
[9] Felippa, C. A. and Park, K. C. [1979] ” Direct time integration methods in nonlinear structural dynamics,” Computer Methods Appl. Mech. Eng.17-18(2), 277-313. genRefLink(16, ’S0219876216500055BIB009’, ’10.1016 · Zbl 0403.73032
[10] Fung, T. C. [2002] ” Stability and accuracy of differential quadrature method in solving dynamic problems,” Computer Methods Appl. Mech. Eng.191(13-14), 1311-1331. genRefLink(16, ’S0219876216500055BIB010’, ’10.1016
[11] Gholampour, A. A. and Ghassemieh, M. [2013] ” Nonlinear structural dynamics analysis using weighted residual integration,” Mech. Adv. Mater. Struct.20(3), 199-216. genRefLink(16, ’S0219876216500055BIB011’, ’10.1080
[12] Gholampour, A. A., Ghassemieh, M. and Karimi-Rad, M. [2013] ” A new unconditionally stable time integration method for analysis of nonlinear structural dynamics,” J. Appl. Mech. T., ASME80(2), 289-297.
[13] Hilber, H. and Hughes, T. J. R. [1979] ” Collocation, dissipation and overshoot for time integration schemes in structural dynamics,” Earthquake Eng. Struct. Dyn.6(1), 99-117. genRefLink(16, ’S0219876216500055BIB013’, ’10.1002
[14] Hughes, T. J. R. and Belytschko, T. [1983] ” A precis of developments in computational methods for transient analysis,” J. Appl. Mech.50(4b), 1033-1041. genRefLink(16, ’S0219876216500055BIB014’, ’10.1115
[15] Kuo, S. R. and Yau, J. D. [2011] ” A fast and accurate step-by-step solution procedure for direct integration,” Int. J. Struct. Stab. Dyn.11(3), 473-493. [Abstract] genRefLink(128, ’S0219876216500055BIB015’, ’000290736600005’); · Zbl 1271.74114
[16] Kuo, S. R., Yau, J. D. and Yang, Y. B. [2012] ” A robust time-integration algorithm for solving nonlinear dynamic problems with large rotations and displacements,” Int. J. Struct. Stab. Dyn.12(6), 1250051 (24 pages). [Abstract] genRefLink(128, ’S0219876216500055BIB016’, ’000314629900008’); · Zbl 1359.70003
[17] Lopez, S. and Russo, K. [2008] ” Improving stability in the time-stepping analysis of structural nonlinear dynamics,” Int. J. Struct. Stab. Dyn.08(2), 257-270. [Abstract] genRefLink(128, ’S0219876216500055BIB017’, ’000257540400003’); · Zbl 1205.74182
[18] Paz, M. and Leigh, W. [2003] Structural Dynamics: Theory and Computation, 5th edition (Springer, Netherlands).
[19] Pezeshk, S. and Camp, C. V. [1995] ” An explicit time integration technique for dynamic analysis,” Int. J. Numer. Methods Eng.38(13), 2265-2281. genRefLink(16, ’S0219876216500055BIB019’, ’10.1002 · Zbl 0858.73079
[20] Rezaiee-Pajand, M. and Hashemian, M. [2015] ” Time integration method based on discrete transfer function,” Int. J. Struct. Stab. Dyn.16, 1550009 (22 pages). · Zbl 1359.74440
[21] Rezaiee-Pajand, M. and Karimi-Rad, M. [2014] ” More accurate and stable time integration scheme,” Eng. Comput.30(11), 1-22.
[22] Slone, A. K., Bailey, C. and Cross, M. [2003] ” Dynamic solid mechanics using finite volume methods,” Appl. Math. Model.27(2), 69-87. genRefLink(16, ’S0219876216500055BIB022’, ’10.1016
[23] Subbaraj, K. and Dokainish, M. A. [1989] ” A survey of direct time integration methods in computational structural dynamics. II. Implicit methods,” Computers Struct.32(6), 1387-1401. genRefLink(16, ’S0219876216500055BIB023’, ’10.1016 · Zbl 0702.73073
[24] Wang, M. F. and Au, F. T. K. [2004] ” Higher-order mixed method for time integration in dynamic structural analysis,” J. Sound Vibration278(3), 690-698. genRefLink(16, ’S0219876216500055BIB024’, ’10.1016 · Zbl 1236.74302
[25] Yin, S. H. [2013] ” A new explicit time integration method for structural dynamics,” Int. J. Struct. Stab. Dyn.13(3), 1250068 (23 pages). [Abstract] genRefLink(128, ’S0219876216500055BIB025’, ’000318527700007’); · Zbl 1359.65120
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.