×

Statistical physics of vaccination. (English) Zbl 1359.92111

Summary: Historically, infectious diseases caused considerable damage to human societies, and they continue to do so today. To help reduce their impact, mathematical models of disease transmission have been studied to help understand disease dynamics and inform prevention strategies. Vaccination-one of the most important preventive measures of modern times-is of great interest both theoretically and empirically. And in contrast to traditional approaches, recent research increasingly explores the pivotal implications of individual behavior and heterogeneous contact patterns in populations. Our report reviews the developmental arc of theoretical epidemiology with emphasis on vaccination, as it led from classical models assuming homogeneously mixing (mean-field) populations and ignoring human behavior, to recent models that account for behavioral feedback and/or population spatial/social structure. Many of the methods used originated in statistical physics, such as lattice and network models, and their associated analytical frameworks. Similarly, the feedback loop between vaccinating behavior and disease propagation forms a coupled nonlinear system with analogs in physics. We also review the new paradigm of digital epidemiology, wherein sources of digital data such as online social media are mined for high-resolution information on epidemiologically relevant individual behavior. Armed with the tools and concepts of statistical physics, and further assisted by new sources of digital data, models that capture nonlinear interactions between behavior and disease dynamics offer a novel way of modeling real-world phenomena, and can help improve health outcomes. We conclude the review by discussing open problems in the field and promising directions for future research.

MSC:

92D30 Epidemiology
92C60 Medical epidemiology

Software:

FluTE
PDF BibTeX XML Cite
Full Text: DOI arXiv Link

References:

[1] Henderson, D.; Klepac, P., Lessons from the eradication of smallpox: an interview with DA henderson, Phil. Trans. R. Soc. B, 368, 1623, 20130113, (2013)
[2] Morens, D. M.; Folkers, G. K.; Fauci, A. S., The challenge of emerging and re-emerging infectious diseases, Nature, 430, 6996, 242-249, (2004)
[3] Bonanni, P., Demographic impact of vaccination: a review, Vaccine, 17, S120-S125, (1999)
[4] De Quadros, C. A.; Olivé, J. M.; Hersh, B. S.; Strassburg, M. A.; Henderson, D. A.; Brandling-Bennett, D.; Alleyne, G. A., Measles elimination in the americas: evolving strategies, JAMA, 275, 3, 224-229, (1996)
[5] Heesterbeek, H.; Anderson, R. M.; Andreasen, V.; Bansal, S.; De Angelis, D.; Dye, C.; Eames, K. T.; Edmunds, W. J.; Frost, S. D.; Funk, S., Modeling infectious disease dynamics in the complex landscape of global health, Science, 347, 6227, (2015), aaa4339
[6] Sturm, L. A.; Mays, R. M.; Zimet, G. D., Parental beliefs and decision making about child and adolescent immunization: from polio to sexually transmitted infections, J. Dev. Behav. Pediatr., 26, 6, 441-452, (2005)
[7] Larson, H. J.; Cooper, L. Z.; Eskola, J.; Katz, S. L.; Ratzan, S., Addressing the vaccine confidence gap, Lancet, 378, 9790, 526-535, (2011)
[8] Dhillon, R. S.; Kelly, J. D., Community trust and the ebola endgame, New Engl. J. Med., 373, 9, 787-789, (2015)
[9] Van Valen, L., A new evolutionary law, Evol. Theory, 1, 1-30, (1973)
[10] Page, D. L., Thucydides’ description of the great plague at Athens, Class. Q. (N.S.), 3, 3-4, 97-119, (1953)
[11] Bennett, J. R.; Bennett, R., The Diseases of the Bible, Vol. 9, (1891), Religious Tract Society
[12] Brown, P. J., Microparasites and macroparasites, Cult. Anthr., 2, 1, 155-171, (1987)
[13] Anderson, R. M.; May, R. M., Population biology of infectious diseases: part I, Nature, 280, 361-367, (1979)
[14] Morand, S.; Krasnov, B. R.; Poulin, R., Micromammals and macroparasites, (2006), Springer
[15] Collinge, S. K.; Ray, C., Disease ecology: community structure and pathogen dynamics, (2006), Oxford University Press
[16] Anderson, R. M.; May, R. M., The population dynamics of microparasites and their invertebrate hosts, Phil. Trans. R. Soc. B, 291, 1054, 451-524, (1981)
[17] Swinton, J.; Woolhouse, M.; Begon, M.; Dobson, A.; Ferroglio, E.; Grenfell, B.; Guberti, V.; Hails, R.; Heesterbeek, J.; Lavazza, A., Microparasite transmission and persistence, Ecol. Wildl. Dis., 83-101, (2002)
[18] Keeling, M. J.; Rohani, P., Modeling infectious diseases in humans and animals, (2008), Princeton University Press · Zbl 1279.92038
[19] Giesecke, J., Modern infectious disease epidemiology, (1994), Edward Arnold (Publisher) Ltd.
[20] Krämer, A.; Akmatov, M.; Kretzschmar, M., Principles of infectious disease epidemiology, (2010), Springer
[21] Nelson, K. E.; Williams, C. M., Infectious disease epidemiology: theory and practice, (2014), Jones & Bartlett Publishers
[22] Porta, M. S.; Greenland, S.; Hernán, M.; dos Santos Silva, I.; Last, J. M., A dictionary of epidemiology, (2014), Oxford University Press
[23] Spickler, A. R., Emerging and exotic diseases of animals, (2010), CFSPH Iowa State University
[24] Goddard, J., Infectious diseases and arthropods, (2009), Springer Science & Business Media
[25] Rogers, D.; Packer, M., Vector-borne diseases, models, and global change, Lancet, 342, 8882, 1282-1284, (1993)
[26] Mayer, K. H.; Pizer, H., The social ecology of infectious diseases, (2011), Academic Press
[27] Merrill, R. M., Introduction to epidemiology, (2013), Jones & Bartlett Publishers
[28] Vynnycky, E.; White, R., An introduction to infectious disease modelling, (2010), Oxford University Press
[29] Fraser, C.; Riley, S.; Anderson, R. M.; Ferguson, N. M., Factors that make an infectious disease outbreak controllable, Proc. Natl. Acad. Sci. USA, 101, 16, 6146-6151, (2004)
[30] Thrusfield, M., Veterinary epidemiology, (2013), Elsevier
[31] Thomas, J. C.; Weber, D. J., Epidemiologic methods for the study of infectious diseases, (2001), Oxford University Press New York, NY, USA
[32] Cheng-Mayer, C.; Seto, D.; Tateno, M.; Levy, J. A., Biologic features of HIV-1 that correlate with virulence in the host, Science, 240, 4848, 80-82, (1988)
[33] Stewart, A. D.; Logsdon, J. M.; Kelley, S. E., An empirical study of the evolution of virulence under both horizontal and vertical transmission, Evolution, 59, 4, 730-739, (2005)
[34] Timmreck, T. C., An introduction to epidemiology, (2002), Jones & Bartlett Learning
[35] Fine, P. E., Herd immunity: history, theory, practice, Epidemiol. Rev., 15, 2, 265-302, (1993)
[36] Boslaugh, S., Encyclopedia of epidemiology, (2007), Sage Publications
[37] Fox, J. P.; Elveback, L.; Scott, W.; Gatewood, L.; Ackerman, E., Herd immunity: basic concept and relevance to public health immunization practices, Amer. J. Epidemiol., 94, 3, 179-189, (1971)
[38] Plotkin, S., Mass Vaccination: Global Aspects-progress and Obstacles, Vol. 304, (2006), Springer Science & Business Media
[39] Gangarosa, E. J.; Galazka, A.; Wolfe, C.; Phillips, L.; Miller, E.; Chen, R.; Gangarosa, R., Impact of anti-vaccine movements on pertussis control: the untold story, Lancet, 351, 9099, 356-361, (1998)
[40] Kohanski, M. A.; Dwyer, D. J.; Collins, J. J., How antibiotics kill bacteria: from targets to networks, Nat. Rev. Microbiol., 8, 6, 423-435, (2010)
[41] Lorian, V., Antibiotics in laboratory medicine, (2005), Lippincott Williams & Wilkins
[42] Gonzales, R.; Malone, D. C.; Maselli, J. H.; Sande, M. A., Excessive antibiotic use for acute respiratory infections in the united states, Clin. Infect. Dis., 33, 6, 757-762, (2001)
[43] Seppälä, H.; Klaukka, T.; Vuopio-Varkila, J.; Muotiala, A.; Helenius, H.; Lager, K.; Huovinen, P., The effect of changes in the consumption of macrolide antibiotics on erythromycin resistance in group A streptococci in Finland, New Engl. J. Med., 337, 7, 441-446, (1997)
[44] Blaser, M., Antibiotic overuse: stop the Killing of beneficial bacteria, Nature, 476, 7361, 393-394, (2011)
[45] Davies, J.; Davies, D., Origins and evolution of antibiotic resistance, Microbiol. Mol. Biol. Rev., 74, 3, 417-433, (2010)
[46] Zhang, R.; Eggleston, K.; Rotimi, V.; Zeckhauser, R. J., Antibiotic resistance as a global threat: evidence from China, kuwait and the united states, Glob. Health, 2, 6, 1-14, (2006)
[47] Stephenson, I.; Nicholson, K. G.; Colegate, A.; Podda, A.; Wood, J.; Ypma, E.; Zambon, M., Boosting immunity to influenza H5N1 with MF59-adjuvanted H5N3 A/duck/Singapore/97 vaccine in a primed human population, Vaccine, 21, 15, 1687-1693, (2003)
[48] Comstock, G. W., Vaccine evaluation by case-control or prospective studies, Amer. J. Epidemiol., 131, 2, 205-207, (1990)
[49] Orenstein, W. A.; Bernier, R. H.; Hinman, A. R., Assessing vaccine efficacy in the field further observations, Epidemiol. Rev., 10, 1, 212-241, (1988)
[50] Chen, R. T.; Orenstein, W. A., Epidemiologic methods in immunization programs, Epidemiol. Rev., 18, 2, 99-117, (1996)
[51] Blendon, R. J.; Benson, J. M.; DesRoches, C. M.; Raleigh, E.; Taylor-Clark, K., The public’s response to severe acute respiratory syndrome in Toronto and the united states, Clin. Infect. Dis., 38, 7, 925-931, (2004)
[52] Gross, T.; Lima, C. J.D. D.; Blasius, B., Epidemic dynamics on an adaptive network, Phys. Rev. Lett., 96, 20, (2006)
[53] Funk, S.; Gilad, E.; Watkins, C.; Jansen, V. A., The spread of awareness and its impact on epidemic outbreaks, Proc. Natl. Acad. Sci., 106, 16, 6872-6877, (2009) · Zbl 1203.91242
[54] Zanette, D. H.; Risau-Gusmán, S., Infection spreading in a population with evolving contacts, J. Biol. Phys., 34, 1-2, 135-148, (2008)
[55] Yu, Y.; Xiao, G., On early detection of strong infections in complex networks, J. Phys. A: Math. Gen., 47, 6, (2014) · Zbl 1291.90045
[56] Xia, C.; Wang, L.; Sun, S.; Wang, J., An SIR model with infection delay and propagation vector in complex networks, Nonlinear Dynam., 69, 3, 927-934, (2012)
[57] Sun, G.; Wu, Z.; Wang, Z.; Jin, Z., Influence of isolation degree of spatial patterns on persistence of populations, Nonlinear Dynam., 83, 1-2, 811-819, (2016)
[58] Sun, G.; Wang, S.; Ren, Q.; Jin, Z.; Wu, Y., Effects of time delay and space on herbivore dynamics: linking inducible defenses of plants to herbivore outbreak, Sci. Rep., 5, 11246, (2015)
[59] Glass, R. J.; Glass, L. M.; Beyeler, W. E.; Min, H. J., Targeted social distancing design for pandemic influenza, Emerg. Infect. Dis., 12, 11, 1671-1681, (2006)
[60] Poletti, P.; Caprile, B.; Ajelli, M.; Pugliese, A.; Merler, S., Spontaneous behavioural changes in response to epidemics, J. Theoret. Biol., 260, 1, 31-40, (2009)
[61] Caley, P.; Philp, D. J.; McCracken, K., Quantifying social distancing arising from pandemic influenza, J. R. Soc. Interface, 5, 23, 631-639, (2008)
[62] Cohen, M. L., Changing patterns of infectious disease, Nature, 406, 6797, 762-767, (2000)
[63] Aiello, A. E.; Larson, E. L., What is the evidence for a causal link between hygiene and infections?, Lancet Infect. Dis., 2, 2, 103-110, (2002)
[64] Pittet, D.; Hugonnet, S.; Harbarth, S.; Mourouga, P.; Sauvan, V.; Touveneau, S.; Perneger, T. V., Effectiveness of a hospital-wide programme to improve compliance with hand hygiene, Lancet, 356, 9238, 1307-1312, (2000)
[65] Allegranzi, B.; Pittet, D., Role of hand hygiene in healthcare-associated infection prevention, J. Hosp. Infect., 73, 4, 305-315, (2009)
[66] Fewtrell, L.; Kaufmann, R. B.; Kay, D.; Enanoria, W.; Haller, L.; Colford, J. M., Water, sanitation, and hygiene interventions to reduce diarrhoea in less developed countries: a systematic review and meta-analysis, Lancet Infect. Dis., 5, 1, 42-52, (2005)
[67] Prüss, A.; Kay, D.; Fewtrell, L.; Bartram, J., Estimating the burden of disease from water, sanitation, and hygiene at a global level, Environ. Health Perspect., 110, 5, 537-542, (2002)
[68] Kermack, W. O.; McKendrick, A. G., A contribution to the mathematical theory of epidemics, (Proceedings of the Royal Society of London A: Mathematical, Physical and Engineering Sciences, vol. 115, (1927), The Royal Society), 700-721 · JFM 53.0517.01
[69] Bernoulli, D., Essai d’une nouvelle analyse de la mortalité cause par la petite vérole et des avantages de l’inoculation pour la prévenir. histoire de l’académie royale des sciences avec LES mémoires de mathématique et de physique tirés des registres de cette académie. Paris 1766 (année 1760), (Haberman, S.; Sibbett, T., History of Actuarial Science, vol. VIII, Multiple Decrement and Multiple State Models, (1995), William Pickering)
[70] Heesterbeek, H., The law of mass-action in epidemiology: a historical perspective, (Cuddington, K.; Beisner, B., Ecological Paradigms Lost: Routes of Theory Change, (2005), Academic Press), 81-106
[71] Hamer, W. H., The milroy lectures on epidemic disease in england: the evidence of variability and of persistency of type, (1906), Bedford Press
[72] Ross, R., An application of the theory of probabilities to the study of a priori pathometry. part I, Proc. R. Soc. A, Contain. Pap. Math. Phys. Charact., 92, 638, 204-230, (1916) · JFM 46.0789.01
[73] Ross, R.; Hudson, H. P., An application of the theory of probabilities to the study of a priori pathometry. part II, Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci., 93, 650, 212-225, (1917) · JFM 46.0789.02
[74] McKendrick, A., The rise and fall of epidemics, Paludism, 1, 54-66, (1912)
[75] Kermark, M.; Mckendrick, A., Contributions to the mathematical theory of epidemics. part I, Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci., 115, 5, 700-721, (1927) · JFM 53.0517.01
[76] Dietz, K.; Schenzle, D., Mathematical models for infectious disease statistics, (Atkinson, A., A Celebration of Statistics, (1985), Springer), 167-204 · Zbl 0586.92017
[77] Dietz, K., The evaluation of rubella vaccination strategies, (Hiorns, R.; Cooke, D., The Mathematical Theory of the Dynamics of Biological Populations, Vol. 2, (1981), Academic New York), 81-98 · Zbl 0502.92022
[78] Hethcote, H.; Yorke, J., Gonorrhea. transmission dynamics and control, (1984), Springer-Verlag · Zbl 0542.92026
[79] Anderson, R. M.; May, R. M., Infectious diseases of humans: dynamics and control, (1992), Oxford University Press
[80] Bauch, C.; d’Onofrio, A.; Manfredi, P., Behavioral epidemiology of infectious diseases: an overview, (Manfredi, P.; d’Onofrio, A., Modeling the Interplay Between Human Behavior and the Spread of Infectious Diseases, (2013), Springer), 1-19
[81] Hethcote, H. W., The mathematics of infectious diseases, SIAM Rev., 42, 4, 599-653, (2000) · Zbl 0993.92033
[82] O. Diekmann, J. Heesterbeek, Mathematical epidemiology of infectious diseases: model building, analysis and interpretation (2000). · Zbl 0997.92505
[83] Capasso, V., The mathematical structure of epidemic systems, (2008), Springer
[84] Diekmann, O.; Heesterbeek, J.; Metz, J. A., On the definition and the computation of the basic reproduction ratio r0 in models for infectious diseases in heterogeneous populations, J. Math. Biol., 28, 4, 365-382, (1990) · Zbl 0726.92018
[85] Diekmann, O.; Heesterbeek, H.; Britton, T., Mathematical tools for understanding infectious disease dynamics, (2012), Princeton University Press · Zbl 1304.92009
[86] Ferguson, N. M.; Cummings, D. A.; Cauchemez, S.; Fraser, C.; Riley, S.; Meeyai, A.; Iamsirithaworn, S.; Burke, D. S., Strategies for containing an emerging influenza pandemic in southeast Asia, Nature, 437, 7056, 209-214, (2005)
[87] Wallinga, J.; Lipsitch, M., How generation intervals shape the relationship between growth rates and reproductive numbers, Phil. Trans. R. Soc. B, 274, 1609, 599-604, (2007)
[88] Van den Driessche, P.; Watmough, J., Reproduction numbers and sub-threshold endemic equilibria for compartmental models of disease transmission, Math. Biosci., 180, 1, 29-48, (2002) · Zbl 1015.92036
[89] Heesterbeek, J., A brief history of R 0 and a recipe for its calculation, Acta Biotheor., 50, 3, 189-204, (2002)
[90] d’Onofrio, A., Stability properties of pulse vaccination strategy in SEIR epidemic model, Math. Biosci., 179, 1, 57-72, (2002) · Zbl 0991.92025
[91] Olsen, L. F.; Truty, G. L.; Schaffer, W. M., Oscillations and chaos in epidemics: A nonlinear dynamic study of six childhood diseases in Copenhagen, Denmark, Theor. Popul. Biol., 33, 3, 344-370, (1988) · Zbl 0639.92012
[92] Earn, D. J.; Rohani, P.; Bolker, B. M.; Grenfell, B. T., A simple model for complex dynamical transitions in epidemics, Science, 287, 5453, 667-670, (2000)
[93] Dalziel, B. D.; Bjørnstad, O. N.; van Panhuis, W. G.; Burke, D. S.; Metcalf, C. J.E.; Grenfell, B. T., Persistent chaos of measles epidemics in the prevaccination united states caused by a small change in seasonal transmission patterns, PLoS Comput. Biol., 12, 2, (2016), e1004655
[94] Grossman, Z.; Gumowski, I.; Dietz, K., The incidence of infectious diseases under the influence of seasonal fluctuations, Anal. Approach, 525-546, (1977)
[95] Aron, J. L.; Schwartz, I. B., Seasonality and period-doubling bifurcations in an epidemic model, J. Theoret. Biol., 110, 4, 665-679, (1984)
[96] Schwartz, I. B.; Smith, H. L., Infinite subharmonic bifurcation in an SEIR epidemic model, J. Math. Biol., 18, 3, 233-253, (1983) · Zbl 0523.92020
[97] Smith, H. L., Multiple stable subharmonics for a periodic epidemic model, J. Math. Biol., 17, 2, 179-190, (1983) · Zbl 0529.92018
[98] Bacaer, N.; Abdurahman, X., Resonance of the epidemic threshold in a periodic environment, J. Math. Biol., 57, 5, 649-673, (2008) · Zbl 1161.92044
[99] Rebelo, C.; Margheri, A.; Bacaër, N., Persistence in seasonally forced epidemiological models, J. Math. Biol., 64, 6, 933-949, (2012) · Zbl 1303.92122
[100] Li, M. Y.; Muldowney, J. S., Global stability for the SEIR model in epidemiology, Math. Biosci., 125, 2, 155-164, (1995) · Zbl 0821.92022
[101] Keeling, M. J.; Rohani, P.; Grenfell, B. T., Seasonally forced disease dynamics explored as switching between attractors, Physica D, 148, 3, 317-335, (2001) · Zbl 1076.92511
[102] Minorsky, N., Introduction to non-linear mechanics: topological methods, analytical methods, non-linear resonance, relaxation oscillations, (1947), JW Edwards
[103] Arscott, F. M., An introduction to periodic differential equations, (1964), Pergamon · Zbl 0121.29903
[104] McLachlan, N., Theory and application of Mathieu functions, (1947), Clarendon Press · Zbl 0029.02901
[105] Farkas, M., Periodic motions, (1994), Springer · Zbl 0805.34037
[106] Cesari, L., Asymptotic behavior and stability problems in ordinary differential equations, (1971), Springer · Zbl 0215.13802
[107] Arnold, V. I., Ordinary differential equations, (1992), Springer
[108] Landau, L. D.; Lifshitz, E. M., (Course of Theoretical Physics, Mechanics, vol. 1, (1965), Pergamon Press) · Zbl 0178.57901
[109] Capasso, V.; Serio, G., A generalization of the kermack-mckendrick deterministic epidemic model, Math. Biosci., 42, 1, 43-61, (1978) · Zbl 0398.92026
[110] d’Onofrio, A.; Manfredi, P., Information-related changes in contact patterns may trigger oscillations in the endemic prevalence of infectious diseases, J. Theoret. Biol., 256, 3, 473-478, (2009)
[111] Hadeler, K. P.; Castillo-Chávez, C., A core group model for disease transmission, Math. Biosci., 128, 1, 41-55, (1995) · Zbl 0832.92021
[112] Lopez, A. S.; Guris, D.; Zimmerman, L.; Gladden, L.; Moore, T.; Haselow, D. T.; Loparev, V. N.; Schmid, D. S.; Jumaan, A. O.; Snow, S. L., One dose of varicella vaccine does not prevent school outbreaks: is it time for a second dose?, Pediatrics, 117, 6, e1070-e1077, (2006)
[113] Kribs-Zaleta, C. M.; Velasco-Hernandez, J. X., A simple vaccination model with multiple endemic states, Math. Biosci., 164, 2, 183-201, (2000) · Zbl 0954.92023
[114] Gardiner, C., (Stochastic Methods: A Handbook for the Natural and Social Sciences, Springer Series in Synergetics, (2009), Springer) · Zbl 1181.60001
[115] Van Kampen, N. G., Stochastic processes in physics and chemistry, (2007), Elsevier · Zbl 0974.60020
[116] Gillespie, D. T., Exact stochastic simulation of coupled chemical reactions, J. Phys. Chem., 81, 25, 2340-2361, (1977)
[117] McKane, A. J.; Newman, T. J., Stochastic models in population biology and their deterministic analogs, Phys. Rev. E, 70, (2004), URL http://link.aps.org/doi/10.1103/PhysRevE.70.041902
[118] Gillespie, D. T., The chemical Langevin equation, J. Chem. Phys., 113, 1, 297-306, (2000)
[119] Bartlett, M., Deterministic and stochastic models for recurrent epidemics, (Proceedings of the Third Berkeley Symposium on Mathematical Statistics and Probability, vol. 4, (1956)), 81-109 · Zbl 0070.15004
[120] Keeling, M. J.; Rohani, P., Modeling infectious diseases in humans and animals, (2008), Princeton University Press · Zbl 1279.92038
[121] Keeling, M. J.; Grenfell, B., Disease extinction and community size: modeling the persistence of measles, Science, 275, 5296, 65-67, (1997)
[122] Kuske, R.; Gordillo, L. F.; Greenwood, P., Sustained oscillations via coherence resonance in SIR epidemic model, J. Theoret. Biol., 245, 3, 459-469, (2007)
[123] Khasin, M.; Dykman, M.; Meerson, B., Speeding up disease extinction with a limited amount of vaccine, Phys. Rev. E, 81, 5, (2010)
[124] Andersson, H.; Britton, T., Stochastic Epidemic Models and their Statistical Analysis, Vol. 151, (2012), Springer Science & Business Media
[125] Allen, L. J., Stochastic population and epidemic models -persistence and extinction, (2015), Springer · Zbl 1355.60003
[126] Murray, J. D., (Mathematical Biology, Spatial Models and Biomedical Applications, vol. II, (2002), Springer-Verlag)
[127] Bailey, N. T., The mathematical theory of infectious diseases and its applications, (1975), Charles Griffin & Company Ltd · Zbl 0334.92024
[128] Murray, J. D., (Mathematical Biology, An Introduction, vol. I, (2002), Springer-Verlag) · Zbl 1006.92001
[129] Gonzalez, M. C.; Hidalgo, C. A.; Barabasi, A.-L., Understanding individual human mobility patterns, Nature, 453, 7196, 779-782, (2008)
[130] Balcan, D.; Vespignani, A., Phase transitions in contagion processes mediated by recurrent mobility patterns, Nat. Phys., 7, 7, 581-586, (2011)
[131] Mendez, V.; Fedotov, S.; Horsthemke, W., Reaction-transport systems: mesoscopic foundations, fronts, and spatial instabilities, (2010), Springer Science & Business Media
[132] Keeling, M. J.; Rohani, P., Estimating spatial coupling in epidemiological systems: a mechanistic approach, Ecol. Lett., 5, 1, 20-29, (2002)
[133] Bajardi, P.; Poletto, C.; Ramasco, J. J.; Tizzoni, M.; Colizza, V.; Vespignani, A., Human mobility networks, travel restrictions, and the global spread of 2009 H1N1 pandemic, PLoS One, 6, 1, (2011)
[134] Wang, L.; Zhang, Y.; Huang, T.; Li, X., Estimating the value of containment strategies in delaying the arrival time of an influenza pandemic: A case study of travel restriction and patient isolation, Phys. Rev. E, 86, 3, (2012)
[135] Nah, K.; Otsuki, S.; Chowell, G.; Nishiura, H., Predicting the international spread of middle east respiratory syndrome (MERS), BMC Infect. Dis., 16, 1, 1, (2016)
[136] Nah, K.; Mizumoto, K.; Miyamatsu, Y.; Yasuda, Y.; Kinoshita, R.; Nishiura, H., Estimating risks of importation and local transmission of zika virus infection, PeerJ, 4, (2016), e1904
[137] Jansen, V. A.; Lloyd, A. L., Local stability analysis of spatially homogeneous solutions of multi-patch systems, J. Math. Biol., 41, 3, 232-252, (2000) · Zbl 0982.92032
[138] Lloyd, A. L.; May, R. M., Synchronicity, chaos and population cycles: spatial coherence in an uncertain world, Trends Ecol. Evol., 14, 11, 417-418, (1999)
[139] Lloyd, A. L.; May, R. M., Spatial heterogeneity in epidemic models, J. Theoret. Biol., 179, 1-11, (1996)
[140] Bolker, B.; Grenfell, B., Impact of vaccination on the spatial correlation and persistence of measles dynamics, Proc. Natl. Acad. Sci., 93, 22, 12648-12653, (1996)
[141] Colizza, V.; Vespignani, A., Invasion threshold in heterogeneous metapopulation networks, Phys. Rev. Lett., 99, 14, (2007)
[142] Colizza, V.; Vespignani, A., Epidemic modeling in metapopulation systems with heterogeneous coupling pattern: theory and simulations, J. Theor. Biol., 251, 3, 450-467, (2008)
[143] Lajmanovich, A.; Yorke, J. A., A deterministic model for gonorrhea in a nonhomogeneous population, Math. Biosci., 28, 3, 221-236, (1976) · Zbl 0344.92016
[144] Pastor-Satorras, R.; Vespignani, A., Epidemic spreading in scale-free networks, Phys. Rev. Lett., 86, 14, 3200, (2001)
[145] Olinky, R.; Stone, L., Unexpected epidemic thresholds in heterogeneous networks: the role of disease transmission, Phys. Rev. E, 70, (2004)
[146] d’Onofrio, A., A note on the global behaviour of the network-based SIS epidemic model, Nonlinear Anal. RWA, 9, 4, 1567-1572, (2008) · Zbl 1154.34355
[147] Mossong, J.; Hens, N.; Jit, M.; Beutels, P.; Auranen, K.; Mikolajczyk, R.; Massari, M.; Salmaso, S.; Tomba, G. S.; Wallinga, J., Social contacts and mixing patterns relevant to the spread of infectious diseases, PLoS Med., 5, 3, (2008), e74
[148] Wallinga, J.; Teunis, P.; Kretzschmar, M., Using data on social contacts to estimate age-specific transmission parameters for respiratory-spread infectious agents, Amer. J. Epidemiol., 164, 10, 936-944, (2006)
[149] Wang, L.; Wang, Z.; Zhang, Y.; Li, X., How human location-specific contact patterns impact spatial transmission between populations?, Sci. Rep., 3, 1468, (2013)
[150] Wang, L.; Zhang, Y.; Wang, Z.; Li, X., The impact of human location-specific contact pattern on the sir epidemic transmission between populations, Internat. J. Bifur. Chaos, 23, 05, 1350095, (2013)
[151] Zagheni, E.; Billari, F. C.; Manfredi, P.; Melegaro, A.; Mossong, J.; Edmunds, W. J., Using time-use data to parameterize models for the spread of close-contact infectious diseases, Amer. J. Epidemiol., 168, 9, 1082-1090, (2008)
[152] Fumanelli, L.; Ajelli, M.; Manfredi, P.; Vespignani, A.; Merler, S., Inferring the structure of social contacts from demographic data in the analysis of infectious diseases spread, PLoS Comput. Biol., 8, 9, (2012), e1002673
[153] Thieme, H. R., Mathematics in population biology, (2003), Princeton University Press · Zbl 1054.92042
[154] d’Onofrio, A.; Manfredi, P., Vaccine demand driven by vaccine side effects: dynamic implications for SIR diseases, J. Theoret. Biol., 264, 2, 237-252, (2010)
[155] Iannelli, M.; Martcheva, M.; Li, X.-Z., Strain replacement in an epidemic model with super-infection and perfect vaccination, Math. Biosci., 195, 1, 23-46, (2005) · Zbl 1065.92043
[156] Ball, F.; Britton, T.; House, T.; Isham, V.; Mollison, D.; Pellis, L.; Tomba, G. S., Seven challenges for metapopulation models of epidemics, including households models, Epidemics, 10, 63-67, (2015)
[157] Roberts, M.; Andreasen, V.; Lloyd, A.; Pellis, L., Nine challenges for deterministic epidemic models, Epidemics, 10, 49-53, (2015)
[158] Metcalf, C. J.E.; Andreasen, V.; Bjørnstad, O. N.; Eames, K.; Edmunds, W. J.; Funk, S.; Hollingsworth, T. D.; Lessler, J.; Viboud, C.; Grenfell, B. T., Seven challenges in modeling vaccine preventable diseases, Epidemics, 10, 11-15, (2015)
[159] Lloyd-Smith, J. O.; Mollison, D.; Metcalf, C.; Klepac, P.; Heesterbeek, J., Challenges in modelling infectious disease dynamics: preface, Epidemics, 10, (2015), iii
[160] Albert, R.; Barabási, A.-L., Statistical mechanics of complex networks, Rev. Modern Phys., 74, 1, 47, (2002) · Zbl 1205.82086
[161] Baronchelli, A.; Ferrer-i Cancho, R.; Pastor-Satorras, R.; Chater, N.; Christiansen, M. H., Networks in cognitive science, Trends Cogn. Sci., 17, 7, 348-360, (2013)
[162] Boccaletti, S.; Latora, V.; Moreno, Y.; Chavez, M.; Hwang, D.-U., Complex networks: structure and dynamics, Phys. Rep., 424, 4, 175-308, (2006) · Zbl 1371.82002
[163] G. Caldarelli, et al., Scale-free networks: complex webs in nature and technology, OUP Catalogue. · Zbl 1119.94001
[164] Cohen, R.; Havlin, S., Complex networks: structure, robustness and function, (2010), Cambridge University Press · Zbl 1196.05092
[165] Costa, L.d. F.; Rodrigues, F. A.; Travieso, G.; Villas Boas, P. R., Characterization of complex networks: A survey of measurements, Adv. Phys., 56, 1, 167-242, (2007)
[166] Dorogovtsev, S. N.; Mendes, J. F., Evolution of networks, Adv. Phys., 51, 4, 1079-1187, (2002)
[167] Newman, M., Networks: an introduction, (2010), OUP Oxford
[168] Newman, M. E., The structure and function of complex networks, SIAM Rev., 45, 2, 167-256, (2003) · Zbl 1029.68010
[169] Girvan, M.; Newman, M. E., Community structure in social and biological networks, Proc. Natl. Acad. Sci., 99, 12, 7821-7826, (2002) · Zbl 1032.91716
[170] Pastor-Satorras, R.; Vespignani, A., Epidemic dynamics and endemic states in complex networks, Phys. Rev. E, 63, 6, (2001)
[171] Moreno, Y.; Pastor-Satorras, R.; Vespignani, A., Epidemic outbreaks in complex heterogeneous networks, Eur. Phys. J. B, 26, 4, 521-529, (2002)
[172] Kretzschmar, M.; Morris, M., Measures of concurrency in networks and the spread of infectious disease, Math. Biosci., 133, 2, 165-195, (1996) · Zbl 0844.92022
[173] Watts, D. J.; Strogatz, S. H., Collective dynamics of small-world networks, Nature, 393, 6684, 440-442, (1998) · Zbl 1368.05139
[174] Ore, O.; Ore, Y., Theory of Graphs, Vol. 38, (1962), American Mathematical Society Providence · Zbl 0105.35401
[175] Newman, M. E.J., Mixing patterns in networks, Phys. Rev. E, 67, (2003) · Zbl 1151.91746
[176] Newman, M. E., Assortative mixing in networks, Phys. Rev. Lett., 89, 20, (2002)
[177] Molloy, M.; Reed, B., A critical point for random graphs with a given degree sequence, Random Struct. Algorithms, 6, 2-3, 161-180, (1995) · Zbl 0823.05050
[178] Molloy, M.; Reed, B., The size of the giant component of a random graph with a given degree sequence, Combin. Probab. Comput., 7, 03, 295-305, (1998) · Zbl 0916.05064
[179] Newman, M. E.; Strogatz, S. H.; Watts, D. J., Random graphs with arbitrary degree distributions and their applications, Phys. Rev. E, 64, 2, (2001)
[180] Newman, M. E.; Watts, D. J.; Strogatz, S. H., Random graph models of social networks, Proc. Natl. Acad. Sci., 99, Suppl. 1, 2566-2572, (2002) · Zbl 1114.91362
[181] Adamic, L. A.; Lukose, R. M.; Puniyani, A. R.; Huberman, B. A., Search in power-law networks, Phys. Rev. E, 64, 4, (2001)
[182] Goh, K.-I.; Kahng, B.; Kim, D., Universal behavior of load distribution in scale-free networks, Phys. Rev. Lett., 87, 27, (2001)
[183] Barthelemy, M., Betweenness centrality in large complex networks, Eur. Phys. J. B, 38, 2, 163-168, (2004)
[184] Guimera, R.; Mossa, S.; Turtschi, A.; Amaral, L. A., The worldwide air transportation network: anomalous centrality, community structure, and cities’ global roles, Proc. Natl. Acad. Sci., 102, 22, 7794-7799, (2005) · Zbl 1135.90309
[185] Ravasz, E.; Barabási, A.-L., Hierarchical organization in complex networks, Phys. Rev. E, 67, 2, (2003) · Zbl 1151.91744
[186] Vázquez, A.; Pastor-Satorras, R.; Vespignani, A., Large-scale topological and dynamical properties of the Internet, Phys. Rev. E, 65, 6, (2002)
[187] Newman, M. E.; Girvan, M., Finding and evaluating community structure in networks, Phys. Rev. E, 69, 2, (2004)
[188] Strogatz, S. H., Exploring complex networks, Nature, 410, 6825, 268-276, (2001) · Zbl 1370.90052
[189] Fortunato, S., Community detection in graphs, Phys. Rep., 486, 3, 75-174, (2010)
[190] Erdős, P.; Rényi, A., On random graphs, Publ. Math. Debrecen, 6, 290-297, (1959) · Zbl 0092.15705
[191] Gilbert, E. N., Random graphs, Ann. Math. Stat., 30, 4, 1141-1144, (1959) · Zbl 0168.40801
[192] Solomonoff, R.; Rapoport, A., Connectivity of random nets, Bull. Math. Biophys., 13, 2, 107-117, (1951)
[193] Dorogovtsev, S. N.; Mendes, J. F., Evolution of networks: from biological nets to the Internet and WWW, (2013), OUP Oxford · Zbl 1109.68537
[194] Newman, M. E., Properties of highly clustered networks, Phys. Rev. E, 68, 2, (2003)
[195] Monasson, R., Diffusion, localization and dispersion relations on “small-world” lattices, Eur. Phys. J. B, 12, 4, 555-567, (1999)
[196] Bender, E. A.; Canfield, E. R., The asymptotic number of labeled graphs with given degree sequences, J. Combin. Theory Ser. A, 24, 3, 296-307, (1978) · Zbl 0402.05042
[197] Aiello, W.; Chung, F.; Lu, L., A random graph model for massive graphs, (Proceedings of the Thirty-second Annual ACM Symposium on Theory of Computing, (2000), ACM), 171-180 · Zbl 1296.05172
[198] Caldarelli, G.; Capocci, A.; De Los Rios, P.; Munoz, M. A., Scale-free networks from varying vertex intrinsic fitness, Phys. Rev. Lett., 89, 25, (2002)
[199] Masuda, N.; Aihara, K., Global and local synchrony of coupled neurons in small-world networks, Biol. Cybernet., 90, 4, 302-309, (2004) · Zbl 1057.92021
[200] Toroczkai, Z.; Bassler, K. E., Network dynamics: jamming is limited in scale-free systems, Nature, 428, 6984, (2004), 716-716
[201] Barabási, A.-L.; Jeong, H.; Néda, Z.; Ravasz, E.; Schubert, A.; Vicsek, T., Evolution of the social network of scientific collaborations, Physica A, 311, 3, 590-614, (2002) · Zbl 0996.91086
[202] Boccaletti, S.; Bianconi, G.; Criado, R.; Del Genio, C. I.; Gómez-Gardeñes, J.; Romance, M.; Sendiña-Nadal, I.; Wang, Z.; Zanin, M., The structure and dynamics of multilayer networks, Phys. Rep., 544, 1, 1-122, (2014)
[203] Dorogovtsev, S. N.; Mendes, J. F.F.; Samukhin, A. N., Structure of growing networks with preferential linking, Phys. Rev. Lett., 85, 21, 4633, (2000)
[204] Marchiori, M.; Latora, V., Harmony in the small-world, Physica A, 285, 3, 539-546, (2000) · Zbl 1060.91520
[205] Latora, V.; Marchiori, M., Efficient behavior of small-world networks, Phys. Rev. Lett., 87, 19, (2001) · Zbl 1060.91520
[206] Krause, A. E.; Frank, K. A.; Mason, D. M.; Ulanowicz, R. E.; Taylor, W. W., Compartments revealed in food-web structure, Nature, 426, 6964, 282-285, (2003)
[207] Latora, V.; Marchiori, M., Economic small-world behavior in weighted networks, Eur. Phys. J. B, 32, 2, 249-263, (2003)
[208] Polis, G. A., Ecology: stability is woven by complex webs, Nature, 395, 6704, 744-745, (1998)
[209] McCann, K.; Hastings, A.; Huxel, G. R., Weak trophic interactions and the balance of nature, Nature, 395, 6704, 794-798, (1998)
[210] Sporns, O.; Tononi, G.; Edelman, G. M., Connectivity and complexity: the relationship between neuroanatomy and brain dynamics, Neural Netw., 13, 8, 909-922, (2000)
[211] Barrat, A.; Barthelemy, M.; Pastor-Satorras, R.; Vespignani, A., The architecture of complex weighted networks, Proc. Natl. Acad. Sci. USA, 101, 11, 3747-3752, (2004)
[212] Li, W.; Cai, X., Statistical analysis of airport network of China, Phys. Rev. E, 69, 4, (2004)
[213] Li, D.; Jiang, Y.; Kang, R.; Shlomo, H., Spatial correlation analysis of cascading failures: congestions and blackouts, Sci. Rep., 4, 5381, (2014)
[214] Li, D.; Kosmas, K.; Armin, B.; Shlomo, H., Dimension of spatially embedded networks, Nat. Phys., 7, 6, 481-484, (2011)
[215] Sun, G.-Q.; Jusup, M.; Jin, Z.; Wang, Y.; Wang, Z., Pattern transitions in spatial epidemics: mechanisms and emergent properties, Phys. Life Rev., (2016)
[216] Wang, L.; Li, X.; Zhang, Y.; Zhang, Y.; Zhang, K., Volution of scaling emergence in large-scale spatial epidemic spreading, PLoS One, 6, 7, (2011), e21197
[217] Gross, T.; Blasius, B., Adaptive coevolutionary networks: a review, J. R. Soc. Interface, 5, 20, 259-271, (2008)
[218] Holme, P.; Saramäki, J., Temporal networks, Phys. Rep., 519, 3, 97-125, (2011)
[219] Nicosia, V.; Latora, V., Measuring and modelling correlations in multiplex networks, Phys. Rev. E, 92, (2015)
[220] Zhang, Y.; Wang, L.; Zhang, Y.; Li, X., Towards a temporal network analysis of interactive WiFi users, Europhys. Lett., 98, 6, 68002, (2012)
[221] May, R. M.; Lloyd, A. L., Infection dynamics on scale-free networks, Phys. Rev. E, 64, 6, (2001)
[222] Newman, M. E., Spread of epidemic disease on networks, Phys. Rev. E, 66, 1, (2002)
[223] Boguná, M.; Pastor-Satorras, R., Epidemic spreading in correlated complex networks, Phys. Rev. E, 66, 4, (2002)
[224] Callaway, D. S.; Newman, M. E.; Strogatz, S. H.; Watts, D. J., Network robustness and fragility: percolation on random graphs, Phys. Rev. Lett., 85, 25, 5468, (2000)
[225] Cohen, R.; Erez, K.; Ben-Avraham, D.; Havlin, S., Resilience of the Internet to random breakdowns, Phys. Rev. Lett., 85, 21, 4626, (2000)
[226] Parshani, R.; Carmi, S.; Havlin, S., Epidemic threshold for the susceptible-infectious-susceptible model on random networks, Phys. Rev. Lett., 104, 25, (2010)
[227] Van Mieghem, P.; Cator, E., Epidemics in networks with nodal self-infection and the epidemic threshold, Phys. Rev. E, 86, 1, (2012)
[228] Van Mieghem, P.; Omic, J.; Kooij, R., Virus spread in networks, IEEE/ACM Trans. Netw., 17, 1, 1-14, (2009)
[229] Pastor-Satorras, R.; Castellano, C.; Van Mieghem, P.; Vespignani, A., Epidemic processes in complex networks, Rev. Modern Phys., 87, 3, 925, (2015)
[230] Salehi, M.; Sharma, R.; Marzolla, M.; Magnani, M.; Siyari, P.; Montesi, D., Spreading processes in multilayer networks, IEEE Trans. Netw. Sci. Eng., 2, 2, 65-83, (2015)
[231] Min, B.; Goh, K.-I., Layer-crossing overhead and information spreading in multiplex social networks, Bull. Amer. Phys. Soc., 59, 1, (2014)
[232] Magnani, M.; Rossi, L., The ml-model for multi-layer social networks, (Advances in Social Networks Analysis and Mining, ASONAM, 2011 International Conference on, (2011), IEEE), 5-12
[233] Wang, H.; Li, Q.; D’Agostino, G.; Havlin, S.; Stanley, H. E.; Van Mieghem, P., Effect of the interconnected network structure on the epidemic threshold, Phys. Rev. E, 88, 2, (2013)
[234] Lee, K.-M.; Kim, J. Y.; Lee, S.; Goh, K.-I., Multiplex networks, (Networks of Networks: The Last Frontier of Complexity, (2014), Springer), 53-72
[235] Berlingerio, M.; Coscia, M.; Giannotti, F.; Monreale, A.; Pedreschi, D., Multidimensional networks: foundations of structural analysis, World Wide Web, 16, 5-6, 567-593, (2013)
[236] Wasserman, S.; Faust, K., Social Network Analysis: Methods and Applications, Vol. 8, (1994), Cambridge University Press
[237] Gao, J.; Li, D.; Havlin, S., From a single network to a network of networks, Natl. Sci. Rev., 1, 3, 346-356, (2014)
[238] Dickison, M.; Havlin, S.; Stanley, H. E., Epidemics on interconnected networks, Phys. Rev. E, 85, 6, (2012)
[239] Zhao, D.; Li, L.; Peng, H.; Luo, Q.; Yang, Y., Multiple routes transmitted epidemics on multiplex networks, Phys. Lett. A, 378, 10, 770-776, (2014) · Zbl 1323.92216
[240] Wang, W.; Tang, M.; Zhang, H.-F.; Gao, H.; Do, Y.; Liu, Z.-H., Epidemic spreading on weighted networks with general weight and degree distributions, Phys. Rev. E, 90, 4, (2014)
[241] Goldenberg, J.; Libai, B.; Muller, E., Talk of the network: A complex systems look at the underlying process of word-of-mouth, Mark. Lett., 12, 3, 211-223, (2001)
[242] Wang, Y.; Xiao, G.; Wong, L.; Fu, X.; Ma, S.; Cheng, T., Effects of fear factors in disease propagation, J. Phys. A: Math. Gen., 44, 35, (2011) · Zbl 1223.92058
[243] Qian, D.; Yagan, O.; Yang, L.; Zhang, J., Diffusion of real-time information in social-physical networks, (Global Communications Conference, GLOBECOM, 2012 IEEE, (2012), IEEE), 2072-2077
[244] Marceau, V.; Noël, P.-A.; Hébert-Dufresne, L.; Allard, A.; Dubé, L. J., Modeling the dynamical interaction between epidemics on overlay networks, Phys. Rev. E, 84, 2, (2011)
[245] Buono, C.; Alvarez-Zuzek, L. G.; Macri, P. A.; Braunstein, L. A., Epidemics in partially overlapped multiplex networks, PLoS One, 9, 3, (2014), e92200
[246] Funk, S.; Jansen, V. A., Interacting epidemics on overlay networks, Phys. Rev. E, 81, 3, (2010)
[247] Sanz, J.; Xia, C.-Y.; Meloni, S.; Moreno, Y., Dynamics of interacting diseases, Phys. Rev. X, 4, 4, (2014)
[248] Eames, K. T.; Keeling, M. J., Modeling dynamic and network heterogeneities in the spread of sexually transmitted diseases, Proc. Natl. Acad. Sci., 99, 20, 13330-13335, (2002)
[249] Eubank, S.; Guclu, H.; Kumar, V. A.; Marathe, M. V.; Srinivasan, A.; Toroczkai, Z.; Wang, N., Modelling disease outbreaks in realistic urban social networks, Nature, 429, 6988, 180-184, (2004)
[250] Meyers, L. A.; Pourbohloul, B.; Newman, M. E.; Skowronski, D. M.; Brunham, R. C., Network theory and SARS: predicting outbreak diversity, J. Theoret. Biol., 232, 1, 71-81, (2005)
[251] Read, J. M.; Keeling, M. J., Disease evolution on networks: the role of contact structure, Proc. R. Soc. Lond. Biol., 270, 1516, 699-708, (2003)
[252] Wallinga, J.; Edmunds, W. J.; Kretzschmar, M., Perspective: human contact patterns and the spread of airborne infectious diseases, TIM, 7, 9, 372-377, (1999)
[253] Chao, D. L.; Halloran, M. E.; Obenchain, V. J.; Longini Jr., I. M., Flute, a publicly available stochastic influenza epidemic simulation model, PLoS Comput. Biol., 6, 1, (2010), e1000656
[254] Merler, S.; Ajelli, M., The role of population heterogeneity and human mobility in the spread of pandemic influenza, Proc. R. Soc. Lond. Biol., 277, 1681, 557-565, (2010)
[255] Garnett, G. P.; Anderson, R. M., Sexually transmitted diseases and sexual behavior: insights from mathematical models, J. Infect. Dis., 174, Suppl. 2, S150-S161, (1996)
[256] Ghani, A. C.; Swinton, J.; Garnett, G. P., The role of sexual partnership networks in the epidemiology of gonorrhea, Sex. Transm. Dis., 24, 1, 45-56, (1997)
[257] Morris, M.; Kretzschmar, M., Concurrent partnerships and the spread of HIV, AIDS, 11, 5, 641-648, (1997)
[258] Potterat, J. J.; Rothenberg, R. B.; Muth, S. Q., Network structural dynamics and infectious disease propagation, Int. J. STD AIDS, 10, 3, 182-185, (1999)
[259] Klovdahl, A. S., Networks and pathogens, Sex. Transm. Dis., 28, 1, 25-28, (2001)
[260] Rothenberg, R., How a net works: implications of network structure for the persistence and control of sexually transmitted diseases and hiv, Sex. Transm. Dis., 28, 2, 63-68, (2001)
[261] McElroy, P.; Rothenberg, R.; Varghese, R.; Woodruff, R.; Minns, G.; Muth, S.; Lambert, L.; Ridzon, R., A network-informed approach to investigating a tuberculosis outbreak: implications for enhancing contact investigations, Int. J. Tuberc. Lung Dis., 7, Suppl. 3, S486-S493, (2003)
[262] Szendroi, B.; Csányi, G., Polynomial epidemics and clustering in contact networks, Proc. R. Soc. Lond. Biol., 271, Suppl. 5, S364-S366, (2004)
[263] Doherty, I. A.; Padian, N. S.; Marlow, C.; Aral, S. O., Determinants and consequences of sexual networks as they affect the spread of sexually transmitted infections, J. Infec. Dis., 191, Suppl. 1, S42-S54, (2005)
[264] Halloran, M. E.; Longini, I. M.; Nizam, A.; Yang, Y., Containing bioterrorist smallpox, Science, 298, 5597, 1428-1432, (2002)
[265] Cohen, S.; Doyle, W. J.; Skoner, D. P.; Rabin, B. S.; Gwaltney, J. M., Social ties and susceptibility to the common cold, JAMA, 277, 24, 1940-1944, (1997)
[266] Olinky, R.; Stone, L., Unexpected epidemic thresholds in heterogeneous networks: the role of disease transmission, Phys. Rev. E, 70, 3, (2004)
[267] Keeling, M. J.; Eames, K. T., Networks and epidemic models, J. R. Soc. Interface, 2, 4, 295-307, (2005)
[268] Albert, R.; Jeong, H.; Barabási, A.-L., Error and attack tolerance of complex networks, Nature, 406, 6794, 378-382, (2000)
[269] Madar, N.; Kalisky, T.; Cohen, R.; ben Avraham, D.; Havlin, S., Immunization and epidemic dynamics in complex networks, Eur. Phys. J. B, 38, 2, 269-276, (2004)
[270] Anderson, R. M.; May, R. M.; Anderson, B., Infectious Diseases of Humans: Dynamics and Control, Vol. 28, (1992), Wiley Online Library
[271] Hindes, J.; Schwartz, I., Epidemic extinction and control in heterogeneous networks, Phys. Rev. Lett., 117, (2016)
[272] Heesterbeek, J., Mathematical Epidemiology of Infectious Diseases: Model Building, Analysis and Interpretation, Vol. 5, (2000), John Wiley & Sons · Zbl 0997.92505
[273] Barabási, A.-L., Scale-free networks: a decade and beyond, Science, 325, 5939, 412, (2009) · Zbl 1226.91052
[274] Pastor-Satorras, R.; Vespignani, A., Immunization of complex networks, Phys. Rev. E, 65, 3, (2002)
[275] Gallos, L. K.; Liljeros, F.; Argyrakis, P.; Bunde, A.; Havlin, S., Improving immunization strategies, Phys. Rev. E, 75, 4, (2007)
[276] Liu, P.; Miao, H.; Li, Q., A common acquaintance immunization strategy for complex network, (Computer and Information Science, 2009, ICIS 2009. Eighth IEEE/ACIS International Conference on, (2009), IEEE), 713-717
[277] Cohen, R.; Havlin, S.; Ben-Avraham, D., Efficient immunization strategies for computer networks and populations, Phys. Rev. Lett., 91, 24, (2003)
[278] Christakis, N. A.; Fowler, J. H., Social network sensors for early detection of contagious outbreaks, PLoS One, 5, 9, (2010), e12948
[279] Krieger, K., Focus: vaccinate thy neighbor, Physics, 12, 23, (2003)
[280] Barrat, A.; Barthelemy, M.; Vespignani, A., Dynamical processes on complex networks, (2008), Cambridge University Press · Zbl 1198.90005
[281] Barabási, A.-L., Network science, (2016), Cambridge University Press
[282] Bornholdt, S.; Schuster, H. G., Handbook of graphs and networks: from the genome to the Internet, (2003), John Wiley & Sons, Inc. · Zbl 1044.90002
[283] Gao, C.; Liu, J.; Zhong, N., Network immunization with distributed autonomy-oriented entities, IEEE Trans. Parallel Distrib. Syst., 22, 7, 1222-1229, (2011)
[284] Liu, Y.; Deng, Y.; Jusup, M.; Wang, Z., A biologically inspired immunization strategy for network epidemiology, J. Theoret. Biol., 400, 92-102, (2016)
[285] Cornforth, D. M.; Reluga, T. C.; Shim, E.; Bauch, C. T.; Galvani, A. P.; Meyers, L. A., Erratic flu vaccination emerges from short-sighted behavior in contact networks, PLoS Comput. Biol., 7, 1, (2011), e1001062
[286] Wang, Y.; Chakrabarti, D.; Wang, C.; Faloutsos, C., Epidemic spreading in real networks: an eigenvalue viewpoint, (Reliable Distributed Systems, 2003, Proceedings, 22nd International Symposium on, (2003), IEEE), 25-34
[287] Chakrabarti, D.; Wang, Y.; Wang, C.; Leskovec, J.; Faloutsos, C., Epidemic thresholds in real networks, ACM Trans. Inf. Syst. Secur., 10, 4, 1, (2008)
[288] Restrepo, J. G.; Ott, E.; Hunt, B. R., Characterizing the dynamical importance of network nodes and links, Phys. Rev. Lett., 97, 9, (2006)
[289] Cohen, R.; Erez, K.; Ben-Avraham, D.; Havlin, S., Breakdown of the Internet under intentional attack, Phys. Rev. Lett., 86, 16, 3682, (2001)
[290] Lloyd, A. L.; May, R. M., How viruses spread among computers and people, Science, 292, 5520, 1316, (2001)
[291] Jeong, H.; Tombor, B.; Albert, R.; Oltvai, Z. N.; Barabási, A.-L., The large-scale organization of metabolic networks, Nature, 407, 6804, 651-654, (2000)
[292] Dezső, Z.; Barabási, A.-L., Halting viruses in scale-free networks, Phys. Rev. E, 65, 5, (2002)
[293] Chen, Y.; Paul, G.; Havlin, S.; Liljeros, F.; Stanley, H. E., Finding a better immunization strategy, Phys. Rev. Lett., 101, 5, (2008)
[294] Borgatti, S. P., Centrality and network flow, Social Networks, 27, 1, 55-71, (2005)
[295] Eames, K. T.; Read, J. M.; Edmunds, W. J., Epidemic prediction and control in weighted networks, Epidemics, 1, 1, 70-76, (2009)
[296] Miller, J. C.; Hyman, J. M., Effective vaccination strategies for realistic social networks, Physica A, 386, 2, 780-785, (2007)
[297] Schneider, C. M.; Mihaljev, T.; Havlin, S.; Herrmann, H. J., Suppressing epidemics with a limited amount of immunization units, Phys. Rev. E, 84, 6, (2011)
[298] Vidondo, B.; Schwehm, M.; Bühlmann, A.; Eichner, M., Finding and removing highly connected individuals using suboptimal vaccines, BMC Infect. Dis., 12, 1, 51, (2012)
[299] Wang, Y.; Xiao, G.; Hu, J.; Cheng, T.; Wang, L., Imperfect targeted immunization in scale-free networks, Physica A, 388, 12, 2535-2546, (2009)
[300] Friedl, D.-M. B.; Heidemann, J., A critical review of centrality measures in social networks, Bus. Inf. Syst. Eng., 2, 6, 371-385, (2010)
[301] Hébert-Dufresne, L.; Allard, A.; Young, J.-G.; Dubé, L. J., Global efficiency of local immunization on complex networks, Sci. Rep., 3, 2171, (2013)
[302] Latora, V.; Marchiori, M., A measure of centrality based on network efficiency, New J. Phys., 9, 6, 188, (2007)
[303] Ventresca, M.; Aleman, D., Evaluation of strategies to mitigate contagion spread using social network characteristics, Social Networks, 35, 1, 75-88, (2013)
[304] Salathé, M.; Jones, J. H., Dynamics and control of diseases in networks with community structure, PLoS Comput. Biol., 6, 4, (2010), e1000736
[305] Schneider, C. M.; Mihaljev, T.; Herrmann, H. J., Inverse targeting-an effective immunization strategy, Europhys. Lett., 98, 4, 46002, (2012)
[306] Bonacich, P., Power and centrality: A family of measures, Amer. J. Sociol., 1170-1182, (1987)
[307] L. Page, S. Brin, R. Motwani, T. Winograd, The PageRank citation ranking: bringing order to the web (1999-66).
[308] Yang, H.; Wang, B., Immunization of traffic-driven epidemic spreading, Physica A, 443, 86-90, (2016)
[309] Yang, H.; Wang, W.; Lai, Y.; Xie, Y.; Wang, B., Control of epidemic spreading on complex networks by local traffic dynamics, Phys. Rev. E, 84, 4, (2011)
[310] W. Du, B. Liang, G. Yan, O. Lordan, X. Cao, Identifying vital edges in Chinese air route network via memetic algorithm, 2016, arXiv preprint, arXiv:1608.00142.
[311] Freeman, L. C., Centrality in social networks conceptual clarification, Social Networks, 1, 3, 215-239, (1978)
[312] Christley, R. M.; Pinchbeck, G.; Bowers, R.; Clancy, D.; French, N.; Bennett, R.; Turner, J., Infection in social networks: using network analysis to identify high-risk individuals, Amer. J. Epidemiol., 162, 10, 1024-1031, (2005)
[313] Holme, P.; Kim, B. J.; Yoon, C. N.; Han, S. K., Attack vulnerability of complex networks, Phys. Rev. E, 65, 5, (2002)
[314] Yu, Y.; Berger-Wolf, T. Y.; Saia, J., Finding spread blockers in dynamic networks, (Advances in Social Network Mining and Analysis, (2010), Springer), 55-76
[315] Shams, B., Using network properties to evaluate targeted immunization algorithms, Netw. Biol., 4, 3, 74, (2014)
[316] Newman, M. E., A measure of betweenness centrality based on random walks, Social Networks, 27, 1, 39-54, (2005)
[317] Bonacich, P., Factoring and weighting approaches to status scores and clique identification, J. Math. Sociol., 2, 1, 113-120, (1972)
[318] Bonacich, P., Some unique properties of eigenvector centrality, Social Networks, 29, 4, 555-564, (2007)
[319] Tomovski, I.; Kocarev, L., Simple algorithm for virus spreading control on complex networks, IEEE Trans. Circuits Syst. I, 59, 4, 763-771, (2012)
[320] Masuda, N., Immunization of networks with community structure, New J. Phys., 11, 12, (2009)
[321] Feld, S. L., Why your friends have more friends than you do, Amer. J. Sociol., 1464-1477, (1991)
[322] Noh, J. D.; Rieger, H., Random walks on complex networks, Phys. Rev. Lett., 92, 11, (2004)
[323] Ke, H.; Yi, T., Immunization for scale-free networks by random Walker, Chin. Phys., 15, 12, 2782, (2006)
[324] Holme, P., Efficient local strategies for vaccination and network attack, Europhys. Lett., 68, 6, 908, (2004)
[325] Lee, S.; Yook, S.-H.; Kim, Y., Centrality measure of complex networks using biased random walks, Eur. Phys. J. B, 68, 2, 277-281, (2009)
[326] Gómez-Gardenes, J.; Echenique, P.; Moreno, Y., Immunization of real complex communication networks, Eur. Phys. J. B, 49, 2, 259-264, (2006)
[327] Echenique, P.; Gómez-Gardeñes, J.; Moreno, Y.; Vázquez, A., Distance-d covering problems in scale-free networks with degree correlations, Phys. Rev. E, 71, 3, (2005)
[328] Palla, G.; Derényi, I.; Farkas, I.; Vicsek, T., Uncovering the overlapping community structure of complex networks in nature and society, Nature, 435, 7043, 814-818, (2005)
[329] Newman, M. E., Modularity and community structure in networks, Proc. Natl. Acad. Sci., 103, 23, 8577-8582, (2006)
[330] Liu, Z.; Hu, B., Epidemic spreading in community networks, Europhys. Lett., 72, 2, 315, (2005)
[331] Wu, X.; Liu, Z., How community structure influences epidemic spread in social networks, Physica A, 387, 2, 623-630, (2008)
[332] Gross, T.; Sayama, H., Adaptive networks, (2009), Springer
[333] Shaw, L. B.; Schwartz, I. B., Fluctuating epidemics on adaptive networks, Phys. Rev. E, 77, 6, (2008)
[334] Marceau, V.; Noël, P.-A.; Hébert-Dufresne, L.; Allard, A.; Dubé, L. J., Adaptive networks: coevolution of disease and topology, Phys. Rev. E, 82, 3, (2010)
[335] Shaw, L. B.; Schwartz, I. B., Enhanced vaccine control of epidemics in adaptive networks, Phys. Rev. E, 81, 4, (2010)
[336] Gao, C.; Liu, J., Modeling and restraining mobile virus propagation, IEEE Trans. Mobile Comput., 12, 3, 529-541, (2013)
[337] Kivelä, M.; Arenas, A.; Barthelemy, M.; Gleeson, J. P.; Moreno, Y.; Porter, M. A., Multilayer networks, J. Complex Netw., 2, 3, 203-271, (2014)
[338] Wang, W.; Liu, Q.-H.; Cai, S.-M.; Tang, M.; Braunstein, L. A.; Stanley, H. E., Suppressing disease spreading by using information diffusion on multiplex networks, Sci. Rep., 6, 29259, (2016)
[339] Wang, W.; Tang, M.; Yang, H.; Do, Y.; Lai, Y.-C.; Lee, G., Asymmetrically interacting spreading dynamics on complex layered networks, Sci. Rep., 4, 5097, (2014)
[340] Liu, Q.-H.; Wang, W.; Tang, M.; Zhang, H.-F., Impacts of complex behavioral responses on asymmetric interacting spreading dynamics in multiplex networks, Sci. Rep., 6, 25617, (2016)
[341] Gomez, S.; Diaz-Guilera, A.; Gomez-Gardeñes, J.; Perez-Vicente, C. J.; Moreno, Y.; Arenas, A., Diffusion dynamics on multiplex networks, Phys. Rev. Lett., 110, 2, (2013)
[342] Cozzo, E.; Banos, R. A.; Meloni, S.; Moreno, Y., Contact-based social contagion in multiplex networks, Phys. Rev. E, 88, 5, (2013)
[343] Zhao, D.; Wang, L.; Li, S.; Wang, Z.; Wang, L.; Gao, B., Immunization of epidemics in multiplex networks, PLoS One, 9, 11, (2014), e112018
[344] Zhao, D.; Wang, Z.; Xiao, G.; Gao, B.; Wang, L., The robustness of interdependent networks under the interplay between cascading failures and virus propagation, Europhys. Lett., 115, 58004, (2016)
[345] B. Gao, D. Zhao, Competing spreading processes and immunization in multiplex networks, 2016, arXiv preprint, arXiv:1608.01038.
[346] Zhao, D.; Wang, L.; Xu, L.; Wang, Z., Finding another yourself in multiplex networks, Appl. Math. Comput., 266, 599-604, (2015)
[347] Onnela, J.-P.; Saramäki, J.; Hyvönen, J.; Szabó, G.; Lazer, D.; Kaski, K.; Kertész, J.; Barabási, A.-L., Structure and tie strengths in mobile communication networks, Proc. Natl. Acad. Sci., 104, 18, 7332-7336, (2007)
[348] Zhao, J.; Wu, J.; Xu, K., Weak ties: subtle role of information diffusion in online social networks, Phys. Rev. E, 82, 1, (2010)
[349] Gong, K.; Tang, M.; Hui, P. M.; Zhang, H. F.; Younghae, D.; Lai, Y.-C., An efficient immunization strategy for community networks, PLoS One, 8, 12, (2013), e83489
[350] Guimera, R.; Amaral, L. A.N., Functional cartography of complex metabolic networks, Nature, 433, 7028, 895-900, (2005)
[351] Yang, H.; Tang, M.; Zhang, H.-F., Efficient community-based control strategies in adaptive networks, New J. Phys., 14, 12, (2012)
[352] Ruan, Z.; Tang, M.; Liu, Z., Epidemic spreading with information-driven vaccination, Phys. Rev. E, 86, 3, (2012)
[353] Zhao, D.; Peng, H.; Li, L.; Yang, Y.; Li, S., An efficient patch dissemination strategy for mobile networks, Math. Probl. Eng., 2013, (2013)
[354] Zhou, J.; Xiao, G.; Cheong, S.; Fu, X.; Wong, L.; Ma, S.; Cheng, T., Epidemic reemergence in adaptive complex networks, Phys. Rev. E, 85, 3, (2012)
[355] Zhao, D.-w.; Wang, L.-h.; Zhi, Y.-f.; Zhang, J.; Wang, Z., The robustness of multiplex networks under layer node-based attack, Sci. Rep., 6, 24304, (2016)
[356] Peng, H.; Wei, N.; Li, L.; Xie, W.; Yang, Y., Models and synchronization of time-delayed complex dynamical networks with multi-links based on adaptive control, Phys. Lett. A, 374, 23, 2335-2339, (2010) · Zbl 1236.05187
[357] Du, W.-B.; Zhou, X.-L.; Lordan, O.; Wang, Z.; Zhao, C.; Zhu, Y.-B., Analysis of the Chinese airline network as multi-layer networks, Transp. Res. E Logist. Transp. Rev., 89, 108-116, (2016)
[358] Hu, Y.; Havlin, S.; Makse, H. A., Conditions for viral influence spreading through multiplex correlated social networks, Phys. Rev. X, 4, 2, (2014)
[359] Zagenczyk, T. J.; Purvis, R. L., Multiplex social network ties and psychological climate, (Academy of Management Proceedings, vol. 2015, (2015), Academy of Management), 17574
[360] Ma, T.; Zhou, J.; Tang, M.; Tian, Y.; Al-Dhelaan, A.; Al-Rodhaan, M.; Lee, S., Social network and tag sources based augmenting collaborative recommender system, IEICE Trans. Inf. Syst., E98-D, 4, 902-910, (2015)
[361] Xie, S.; Wang, Y., Construction of tree network with limited delivery latency in homogeneous wireless sensor networks, Wirel. Pers. Commun., 78, 1, 231-246, (2014)
[362] Shen, J.; Tan, H.; Wang, J.; Wang, J.; Lee, S., A novel routing protocol providing good transmission reliability in underwater sensor networks, J. Internet Technol., 16, 1, 171-178, (2015)
[363] Guo, P.; Wang, J.; Geng, X. H.; Kim, C. S.; Kim, J.-U., A variable threshold-value authentication architecture for wireless mesh networks, J. Internet Technol., 15, 6, 929-936, (2014)
[364] Centola, D., The spread of behavior in an online social network experiment, Science, 329, 5996, 1194-1197, (2010)
[365] Hosseini, S.; Barker, K.; Ramirez-Marquez, J. E., A review of definitions and measures of system resilience, Reliab. Eng. Syst. Saf., 145, 47-61, (2016)
[366] Du, W.-B.; Zhou, X.-L.; Jusup, M.; Wang, Z., Physics of transportation: towards optimal capacity using the multilayer network framework, Sci. Rep., 6, 19059, (2016)
[367] M. De Domenico, S. Sasai, A. Arenas, Mapping multiplex hubs in human functional brain network, arXiv preprint arXiv:1603.05897.
[368] Sporns, O.; Betzel, R. F., Modular brain networks, Ann. Rev. Psych., 67, 613-640, (2016)
[369] F. Battiston, J. Iacovacci, V. Nicosia, G. Bianconi, V. Latora, Emergence of multiplex communities in collaboration networks, arXiv preprint arXiv:1506.01280.
[370] Wang, Z.; Zhao, D.-W.; Wang, L.; Sun, G.-Q.; Jin, Z., Immunity of multiplex networks via acquaintance vaccination, Europhys. Lett., 112, 4, 48002, (2015)
[371] Buono, C.; Braunstein, L. A., Immunization strategy for epidemic spreading on multilayer networks, Europhys. Lett., 109, 2, 26001, (2015)
[372] Zuzek, L. G.A.; Buono, C.; Braunstein, L. A., Epidemic spreading and immunization strategy in multiplex networks, (Journal of Physics: Conference Series, vol. 640, (2015), IOP Publishing), 012007
[373] Min, B.; Do Yi, S.; Lee, K.-M.; Goh, K.-I., Network robustness of multiplex networks with interlayer degree correlations, Phys. Rev. E, 89, 4, (2014)
[374] Vaidya, A., Modeling the spread and control of a contagion on multiplex social networks, (2016 AAAS Annual Meeting (February 11-15, 2016), (2016), aaas)
[375] Fink, G.; Günther, I.; Hill, K., The effect of water and sanitation on child health: evidence from the demographic and health surveys 1986-2007, Int. J. Epidemiol., 40, 5, 1196-1204, (2011)
[376] Fenner, F.; Henderson, D. A.; Arita, I.; Jezek, Z.; Ladnyi, I. D., Smallpox and its eradication, (1988), World Health Organization Geneva
[377] Dabbagh, A.; Gacic-Dobo, M.; Simons, E.; Featherstone, D.; Strebel, P.; Okwo-Bele, J.; Hoekstra, E.; Chopra, M.; Uzicanin, A.; Cochi, S., Global measles mortality, 2000-2008, Morbidity and Mortality Weekly Report, 58, 47, 1321-1326, (2009)
[378] Levin, A.; Burgess, C.; Garrison, L. P.; Bauch, C.; Babigumira, J.; Simons, E.; Dabbagh, A., Global eradication of measles: an epidemiologic and economic evaluation, J. Infect. Dis., 204, Suppl. 1, S98-S106, (2011)
[379] Cousins, S., Syrian crisis: health experts say more can be done, Lancet, 385, 9972, 931-934, (2015)
[380] Ganapathiraju, P. V.; Morssink, C. B.; Plumb, J., Endgame for polio eradication? options for overcoming social and political factors in the progress to eradicating polio, Global Public Health, 10, 4, 463-473, (2015)
[381] Cochi, S. L.; Freeman, A.; Guirguis, S.; Jafari, H.; Aylward, B., Global polio eradication initiative: lessons learned and legacy, J. Infect. Dis., 210, Suppl. 1, S540-S546, (2014)
[382] De Melker, H.; Pebody, R.; Edmunds, W.; Lévy-Bruhl, D.; Valle, M.; Rota, M.; Salmaso, S.; Van Den Hof, S.; Berbers, G.; Saliou, P., The seroepidemiology of measles in western Europe, Epidemiol. Infect., 126, 02, 249-259, (2001)
[383] Brown, K. F.; Kroll, J. S.; Hudson, M. J.; Ramsay, M.; Green, J.; Long, S. J.; Vincent, C. A.; Fraser, G.; Sevdalis, N., Factors underlying parental decisions about combination childhood vaccinations including MMR: a systematic review, Vaccine, 28, 26, 4235-4248, (2010)
[384] Larson, H. J.; Jarrett, C.; Eckersberger, E.; Smith, D. M.; Paterson, P., Understanding vaccine hesitancy around vaccines and vaccination from a global perspective: A systematic review of published literature, 2007-2012, Vaccine, 32, 19, 2150-2159, (2014)
[385] Serpell, L.; Green, J., Parental decision-making in childhood vaccination, Vaccine, 24, 19, 4041-4046, (2006)
[386] Chapman, G. B.; Coups, E. J., Predictors of influenza vaccine acceptance among healthy adults, Prev. Med., 29, 4, 249-262, (1999)
[387] Ibuka, Y.; Li, M.; Vietri, J.; Chapman, G. B.; Galvani, A. P., Free-riding behavior in vaccination decisions: an experimental study, PLoS One, 9, 1, (2014), e87164
[388] Swennen, B.; Van Damme, P.; Vellinga, A.; Coppieters, Y.; Depoorter, A., Analysis of factors influencing vaccine uptake: perspectives from Belgium, Vaccine, 20, S5-S7, (2001)
[389] Goldstein, K. P.; Philipson, T. J.; Joo, H.; Daum, R. S., The effect of epidemic measles on immunization rates, JAMA, 276, 1, 56-58, (1996)
[390] Bauch, C. T.; Bhattacharyya, S., Evolutionary game theory and social learning can determine how vaccine scares unfold, PLoS Comput. Biol., 8, 4, (2012), e1002452
[391] CDPHA, Immunization rates in child care and schools, california department of public health, https://www.cdph.ca.gov/programs/immunize/Pages/ImmunizationLevels.aspx, 2016.
[392] Allen, J. D.; Othus, M. K.; Shelton, R. C.; Li, Y.; Norman, N.; Tom, L.; del Carmen, M. G., Parental decision making about the HPV vaccine, Cancer Epidemiol. Biomarkers Prevent., 19, 9, 2187-2198, (2010)
[393] Salathé, M.; Kazandjieva, M.; Lee, J. W.; Levis, P.; Feldman, M. W.; Jones, J. H., A high-resolution human contact network for infectious disease transmission, Proc. Natl. Acad. Sci., 107, 51, 22020-22025, (2010)
[394] Christakis, N. A.; Fowler, J. H., The spread of obesity in a large social network over 32 years, New Engl. J. Med., 357, 4, 370-379, (2007)
[395] Campbell, E.; Salathé, M., Complex social contagion makes networks more vulnerable to disease outbreaks, Sci. Rep., 3, 1905, (2013)
[396] Bansal, S.; Grenfell, B. T.; Meyers, L. A., When individual behaviour matters: homogeneous and network models in epidemiology, J. R. Soc. Interface, 4, 16, 879-891, (2007)
[397] Wang, Z.; Andrews, M. A.; Wu, Z.-X.; Wang, L.; Bauch, C. T., Coupled disease-behavior dynamics on complex networks: A review, Phys. Life Rev., 15, 1-29, (2015)
[398] He, D.; Dushoff, J.; Day, T.; Ma, J.; Earn, D. J., Inferring the causes of the three waves of the 1918 influenza pandemic in england and wales, Proc. R. Soc. Lond. Biol., 280, 1766, 20131345, (2013)
[399] Oraby, T.; Thampi, V.; Bauch, C. T., The influence of social norms on the dynamics of vaccinating behaviour for paediatric infectious diseases, Proc. R. Soc. Lond. Biol., 281, 1780, 20133172, (2014)
[400] Chowell, G.; Ammon, C.; Hengartner, N.; Hyman, J., Transmission dynamics of the great influenza pandemic of 1918 in Geneva, Switzerland: assessing the effects of hypothetical interventions, J. Theoret. Biol., 241, 2, 193-204, (2006)
[401] Bootsma, M. C.; Ferguson, N. M., The effect of public health measures on the 1918 influenza pandemic in US cities, Proc. Natl. Acad. Sci., 104, 18, 7588-7593, (2007)
[402] Galvani, A. P.; Reluga, T. C.; Chapman, G. B., Long-standing influenza vaccination policy is in accord with individual self-interest but not with the Utilitarian optimum, Proc. Natl. Acad. Sci., 104, 13, 5692-5697, (2007)
[403] Shim, E.; Chapman, G. B.; Townsend, J. P.; Galvani, A. P., The influence of altruism on influenza vaccination decisions, J. R. Soc. Interface, (2012), rsif20120115
[404] Funk, S.; Salathé, M.; Jansen, V. A., Modelling the influence of human behaviour on the spread of infectious diseases: a review, J. R. Soc. Interface, 7, 50, 1247-1256, (2010)
[405] Perra, N.; Balcan, D.; Gonçalves, B.; Vespignani, A., Towards a characterization of behavior-disease models, PLoS One, 6, 8, (2011), e23084
[406] Capasso, V.; Serio, G., A generalization of the kermack-mckendrick deterministic epidemic model, Math. Biosci., 42, 1, 43-61, (1978) · Zbl 0398.92026
[407] Alshamsi, A.; Pianesi, F.; Lepri, B.; Pentland, A.; Rahwan, I., Beyond contagion: reality mining reveals complex patterns of social influence, PLoS One, 10, 8, (2015), e0135740
[408] Cialdini, R. B.; Reno, R. R.; Kallgren, C. A., A focus theory of normative conduct: recycling the concept of norms to reduce littering in public places, J. Pers. Soc. Psychol., 58, 6, 1015, (1990)
[409] Bandura, A.; Walters, R. H., (Social Learning and Personality Development, vol. 14, (1963), JSTOR)
[410] Atran, S., The trouble with memes, Hum. Nature, 12, 4, 351-381, (2001)
[411] Funk, S.; Gilad, E.; Watkins, C.; Jansen, V. A., The spread of awareness and its impact on epidemic outbreaks, Proc. Natl. Acad. Sci. USA, 106, 16, 6872-6877, (2009) · Zbl 1203.91242
[412] Von Neumann, J.; Morgenstern, O., Theory of games and economic behavior, (2007), Princeton University Press
[413] May, S., Enhanced: simple rules with complex dynamics, Science, 287, 5453, 601-602, (2000)
[414] Bauch, C. T.; Galvani, A. P.; Earn, D. J., Group interest versus self-interest in smallpox vaccination policy, Proc. Natl. Acad. Sci. USA, 100, 18, 10564-10567, (2003) · Zbl 1065.92038
[415] Bauch, C. T.; Earn, D. J., Vaccination and the theory of games, Proc. Natl. Acad. Sci. U.S.A., 101, 36, 13391-13394, (2004) · Zbl 1064.91029
[416] Brito, D. L.; Sheshinski, E.; Intriligator, M. D., Externalities and compulsory vaccinations, J. Publ. Econ., 45, 1, 69-90, (1991)
[417] G. Heal, H. Kunreuther, The vaccination game, Risk Management and Decision Processes Center Working Paper (05-10).
[418] Smith, J. M., Evolution and the theory of games, (1982), Cambridge University Press
[419] Nowak, M. A.; May, R. M., Evolutionary games and spatial chaos, Nature, 359, 6398, 826-829, (1992)
[420] Szabó, G.; Tőke, C., Evolutionary prisoner’s dilemma game on a square lattice, Phys. Rev. E, 58, 1, 69, (1998)
[421] Hauert, C.; Doebeli, M., Spatial structure often inhibits the evolution of cooperation in the snowdrift game, Nature, 428, 6983, 643-646, (2004)
[422] Xia, C.-Y.; Meloni, S.; Perc, M.; Yamir, M., Dynamic instability of cooperation due to diverse activity patterns in evolutionary social dilemmas, Europhys. Lett., 109, 5, 58002, (2015)
[423] Szabó, G.; Fath, G., Evolutionary games on graphs, Phys. Rep., 446, 4, 97-216, (2007)
[424] Tanimoto, J., Dilemma solving by the coevolution of networks and strategy in a 2\(\times\) 2 game, Phys. Rev. E, 76, 2, (2007)
[425] Deng, Y., Deng entropy, Chaos Solitons Fractals, 91, 549-553, (2016) · Zbl 1372.94368
[426] Deng, Y., Generalized evidence theory, Appl. Intell., 43, 3, 530-543, (2015)
[427] Deng, X.; Wang, Z.; Liu, Q.; Deng, Y.; Mahadevan, S., A belief-based evolutionarily stable strategy, J. Theoret. Biol., 361, 81-86, (2014) · Zbl 1302.91024
[428] Deng, X.; Zhang, Q.; Deng, Y.; Wang, Z., A novel framework of classical and quantum prisoner’s dilemma games on coupled networks, Sci. Rep., 6, 23024, (2016)
[429] Huang, K.; Zheng, X.; Li, Z.; Yang, Y., Understanding cooperative behavior based on the coevolution of game strategy and link weight, Sci. Rep., 5, 14783, (2015)
[430] Huang, K.; Cheng, Y.; Zheng, X.; Yang, Y., Cooperative behavior evolution of small groups on interconnected networks, Chaos Solitons Fractals, 80, 90-95, (2015) · Zbl 1354.91021
[431] Perisic, A.; Bauch, C. T., Social contact networks and disease eradicability under voluntary vaccination, PLoS Comput. Biol., 5, 2, (2009), e1000280
[432] Fu, F.; Rosenbloom, D. I.; Wang, L.; Nowak, M. A., Imitation dynamics of vaccination behaviour on social networks, Proc. R. Soc. B, 278, 1702, 42-49, (2011)
[433] Mbah, M. L.N.; Liu, J.; f, C. T.; Tekel, Y. I.; Medlock, J.; Meyers, L. A.; Galvani, A. P., The impact of imitation on vaccination behavior in social contact networks, PLoS Comput. Biol., 8, 4, (2012), e1002469
[434] Wells, C. R.; Klein, E. Y.; Bauch, C. T., Policy resistance undermines superspreader vaccination strategies for influenza, PLoS Comput. Biol., 9, 3, (2013), e1002945
[435] Bauch, C. T., Imitation dynamics predict vaccinating behaviour, Proc. R. Soc. B, 272, 1573, 1669-1675, (2005)
[436] Reluga, T. C.; Bauch, C. T.; Galvani, A. P., Evolving public perceptions and stability in vaccine uptake, Math. Biosci., 204, 2, 185-198, (2006) · Zbl 1104.92042
[437] Innes, C.; Anand, M.; Bauch, C. T., The impact of human-environment interactions on the stability of forest-grassland mosaic ecosystems, Sci. Rep., 3, 2689, (2013)
[438] Barlow, L.-A.; Cecile, J.; Bauch, C. T.; Anand, M., Modelling interactions between forest pest invasions and human decisions regarding firewood transport restrictions, PLoS One, 9, 4, (2014), e90511
[439] Busemeyer, J. R.; Townsend, J. T., Decision field theory: a dynamic-cognitive approach to decision making in an uncertain environment, Psychol. Rev., 100, 3, 432, (1993)
[440] Andrews, M. A.; Bauch, C. T., Disease interventions can interfere with one another through disease-behaviour interactions, PLoS Comput. Biol., 11, 6, (2015), e1004291
[441] Oraby, T.; Bauch, C. T., Bounded rationality alters the dynamics of paediatric immunization acceptance, Sci. Rep., 5, 10724, (2015)
[442] Shafer, G., (A Mathematical Theory of Evidence, vol. 1, (1976), Princeton University Press)
[443] Xia, S.; Liu, J., A belief-based model for characterizing the spread of awareness and its impacts on individuals vaccination decisions, J. R. Soc. Interface, 11, 94, 20140013, (2014)
[444] Funk, S.; Salathé, M.; Jansen, V. A., Modelling the influence of human behaviour on the spread of infectious diseases: a review, J. R. Soc. Interface, 7, 50, 1247-1256, (2010)
[445] (Manfredi, P.; d’Onofrio, A., Modeling the Interplay between Human Behavior and the Spread of Infectious Diseases, (2013), Springer Science & Business Media)
[446] Bauch, C. T.; Galvani, A. P., Epidemiology. social factors in epidemiology, Science (New York, NY), 342, 6154, 47-49, (2013)
[447] d’Onofrio, A.; Manfredi, P.; Salinelli, E., Vaccinating behaviour, information, and the dynamics of sir vaccine preventable diseases, Theoret. Popul. Biol., 71, 3, 301-317, (2007) · Zbl 1124.92029
[448] d’Onofrio, A.; Manfredi, P., Bifurcation thresholds in an sir model with information-dependent vaccination, Math. Model. Nat. Phenom., 2, 01, 26-43, (2007) · Zbl 1337.92223
[449] d’Onofrio, A.; Manfredi, P.; Salinelli, E., Fatal SIR diseases and rational exemption to vaccination, Math. Med. Biol., 25, 4, 337-357, (2008) · Zbl 1154.92031
[450] d’Onofrio, A.; Manfredi, P.; Salinelli, E., Vaccinating behaviour and the dynamics of vaccine preventable infections, (d’Onofrio, A.; Manfredi, P., Modeling the Interplay Between Human Behavior and the Spread of Infectious Diseases, (2013), Springer), 267-287
[451] MacDonald, N., Biological delay systems: linear stability theory, (1989), Cambridge University Press · Zbl 0669.92001
[452] Reluga, T. C.; Bauch, C. T.; Galvani, A. P., Evolving public perceptions and stability in vaccine uptake, Math. Biosci., 204, 2, 185-198, (2006) · Zbl 1104.92042
[453] Geoffard, P.-Y.; Philipson, T., Disease eradication: private versus public vaccination, Amer. Econ. Rev., 87, 1, 222-230, (1997)
[454] Efimov, D. V.; Fradkov, A. L., Yakubovich’s oscillatority of Circadian oscillations models, Math. Biosci., 216, 2, 187-191, (2008) · Zbl 1166.92018
[455] Buonomo, B.; d’Onofrio, A.; Lacitignola, D., Global stability of an SIR epidemic model with information dependent vaccination, Math. Biosci., 216, 1, 9-16, (2008) · Zbl 1152.92019
[456] Buonomo, B.; d’Onofrio, A.; Lacitignola, D., Modeling of pseudo-rational exemption to vaccination for SEIR diseases, J. Math. Anal. Appl., 404, 2, 385-398, (2013) · Zbl 1304.92118
[457] Bhattacharyya, S.; Bauch, C., A game dynamic model for delayer strategies in vaccinating behaviour for pediatric infectious diseases, J. Theoret. Biol., 267, 3, 276-282, (2010)
[458] Xu, F.; Cressman, R., Disease control through voluntary vaccination decisions based on the smoothed best response, Comput. Math. Methods Med., 2014, (2014) · Zbl 1307.92357
[459] Nowak, M., Evolutionary dynamics: exploring the equations of life, (2006), Belknap Press of Hardvard University Press Cambridge, Massachusets · Zbl 1115.92047
[460] Nowak, M., Five rules for the evolution of cooperation, Science, 8, 5805, 1560-1563, (2006)
[461] Hofbauer, J.; Sigmund, K., Evolutionary games and population dynamics, (1998), Cambridge university press · Zbl 0914.90287
[462] Bauch, C. T., Imitation dynamics predict vaccinating behaviour, Proc. R. Soc. Lond. Biol., 272, 1573, 1669-1675, (2005)
[463] d’Onofrio, A.; Manfredi, P.; Poletti, P., The impact of vaccine side effects on the natural history of immunization programmes: an imitation-game approach, J. Theoret. Biol., 273, 1, 63-71, (2011) · Zbl 1405.92149
[464] Bauch, C. T.; Bhattacharyya, S., Evolutionary game theory and social learning can determine how vaccine scares unfold, PLoS Comput. Biol., 8, 4, (2012), e1002452
[465] Oraby, T.; Bauch, C. T., Bounded rationality alters the dynamics of paediatric immunization acceptance, Sci. Rep., 5, 10724, (2015)
[466] Center for disease control, vaccine safety, 2016. http://www.cdc.gov/vaccinesafety/ensuringsafety/monitoring/vaers/. (Accessed 3 June 2016).
[467] Ajzen, I., The theory of planned behavior, Organ. Behav Hum. Decis. Process., 50, 2, 179-211, (1991)
[468] Cialdini, R. B.; Trost, M. R., Social influence: social norms, conformity and compliance, (1998), McGraw-Hill
[469] Helbing, D.; Johansson, A., Cooperation, norms, and revolutions: a unified game-theoretical approach, PLoS One, 5, 10, (2010), e12530
[470] Kahneman, D.; Tversky, A., Prospect theory: an analysis of decision under risk, Econometrica, 263-291, (1979) · Zbl 0411.90012
[471] Bass, F., A new product growth for model consumer durables, Manag. Sci., 15, 215-227, (1969) · Zbl 1231.91323
[472] Bauch, C. T.; Galvani, A. P.; Earn, D. J., Group interest versus self-interest in smallpox vaccination policy, Proc. Natl. Acad. Sci., 100, 18, 10564-10567, (2003) · Zbl 1065.92038
[473] Bauch, C. T.; Earn, D. J., Vaccination and the theory of games, Proc. Natl. Acad. Sci. USA, 101, 36, 13391-13394, (2004) · Zbl 1064.91029
[474] Reluga, T. C.; Galvani, A. P., A general approach for population games with application to vaccination, Math. Biosci., 230, 2, 67-78, (2011) · Zbl 1211.92049
[475] Shim, E.; Grefenstette, J. J.; Albert, S. M.; Cakouros, B. E.; Burke, D. S., A game dynamic model for vaccine skeptics and vaccine believers: measles as an example, J. Theoret. Biol., 295, 194-203, (2012) · Zbl 1336.92087
[476] Aubin, J.-P.; Frankowska, H., Set-valued analysis, (2009), Springer Science & Business Media
[477] Reluga, T. C., An sis epidemiology game with two subpopulations, J. Biol. Dyn., 3, 5, 515-531, (2009) · Zbl 1342.92277
[478] Manfredi, P.; Della Posta, P.; d’Onofrio, A.; Salinelli, E.; Centrone, F.; Meo, C.; Poletti, P., Optimal vaccination choice, vaccination games, and rational exemption: an appraisal, Vaccine, 28, 1, 98-109, (2009)
[479] Fine, P. E.; Clarkson, J. A., Individual versus public priorities in the determination of optimal vaccination policies, Amer. J. Epidemiol., 124, 6, 1012-1020, (1986)
[480] Francis, P. J., Dynamic epidemiology and the market for vaccinations, J. Publ. Econ., 63, 3, 383-406, (1997)
[481] Scalia-Tomba, G., The effect of structural behavior change on the spread of hiv in a one-sex population, Math. Biosci., 107, 2, 547-555, (1991)
[482] Li, J., Effects of behavior change on the spread of AIDS epidemic, Math. Comput. Modelling, 16, 6-7, 103-111, (1992) · Zbl 0761.92034
[483] Stigum, H.; Magnus, P.; Bakketeig, L. S., Effect of changing partnership formation rates on the spread of sexually transmitted diseases and human immunodeficiency virus, Amer. J. Epidemiol., 145, 7, 644-652, (1997)
[484] Velasco-Hernandez, J. X.; Hsieh, Y.-H., Modelling the effect of treatment and behavioral change in hiv transmission dynamics, J. Math. Biol., 32, 3, 233-249, (1994) · Zbl 0792.92023
[485] Hsieh, Y.-H., A two-sex model for treatment of HIV/AIDS and behaviour change in a population of varying size, Math. Med. Biol., 13, 3, 151-173, (1996) · Zbl 0857.92014
[486] Velasco-Hernández, J. X.; Brauer, F.; Castillo-Chavez, C., Effects of treatment and prevalence-dependent recruitment on the dynamics of a fatal disease, Math. Med. Biol., 13, 3, 175-192, (1996) · Zbl 0857.92015
[487] Kremer, M., Integrating behavioral choice into epidemiological models of AIDS, Q. J. Econ., 111, 2, 549-573, (1996) · Zbl 0845.92022
[488] Kremer, M.; Morcom, C., The effect of changing sexual activity on HIV prevalence, Math. Biosci., 151, 1, 99-122, (1998) · Zbl 0942.92031
[489] Shim, E.; Meyers, L.; Galvani, A. P., Optimal H1N1 vaccination strategies based on self-interest versus group interest, BMC Public Health, 11, 1, 1, (2011)
[490] Breban, R.; Vardavas, R.; Blower, S., Mean-field analysis of an inductive reasoning game: application to influenza vaccination, Phys. Rev. E, 76, 3, (2007)
[491] Vardavas, R.; Breban, R.; Blower, S., Can influenza epidemics be prevented by voluntary vaccination?, PLoS Comput. Biol., 3, 5, (2007), e85
[492] Shim, E.; Kochin, B.; Galvani, A., Insights from epidemiological game theory into gender-specific vaccination against rubella, Math. Biosci. Eng., 6, 4, 839-854, (2009) · Zbl 1178.92041
[493] Gersovitz, M.; Hammer, J. S., The economical control of infectious diseases, Econ. J., 114, 492, 1-27, (2004)
[494] Chen, F. H., A susceptible-infected epidemic model with voluntary vaccinations, J. Math. Biol., 53, 2, 253-272, (2006) · Zbl 1098.92044
[495] Chen, F.; Toxvaerd, F., The economics of vaccination, J. Theoret. Biol., 363, 105-117, (2014) · Zbl 1309.92072
[496] Cojocaru, M.-G.; Bauch, C. T.; Johnston, M. D., Dynamics of vaccination strategies via projected dynamical systems, Bull. Math. Biol., 69, 5, 1453-1476, (2007) · Zbl 1298.92097
[497] Althouse, B. M.; Bergstrom, T. C.; Bergstrom, C. T., A public choice framework for controlling transmissible and evolving diseases, Proc. Natl. Acad. Sci., 107, Suppl. 1, 1696-1701, (2010)
[498] Voinson, M.; Billiard, S.; Alvergne, A., Beyond rational decision-making: modelling the influence of cognitive biases on the dynamics of vaccination coverage, PLoS One, 10, 11, (2015), e0142990
[499] Crepaz, N.; Hart, T. A.; Marks, G., Highly active antiretroviral therapy and sexual risk behavior: a meta-analytic review, JAMA, 292, 2, 224-236, (2004)
[500] Gómez-Gardeñes, J.; Latora, V.; Moreno, Y.; Profumo, E., Spreading of sexually transmitted diseases in heterosexual populations, Proc. Natl. Acad. Sci., 105, 5, 1399-1404, (2008)
[501] Bauch, C.; Rand, D., A moment closure model for sexually transmitted disease transmission through a concurrent partnership network, Proc. R. Soc. Lond. Biol., 267, 1456, 2019-2027, (2000)
[502] Del Valle, S.; Hethcote, H.; Hyman, J.; Castillo-Chavez, C., Effects of behavioral changes in a smallpox attack model, Math. Biosci., 195, 2, 228-251, (2005) · Zbl 1065.92039
[503] Kretzschmar, M.; Van den Hof, S.; Wallinga, J.; Van Wijngaarden, J., Ring vaccination and smallpox control, Emerg. Infect. Dis., 10, 5, 832-841, (2004)
[504] Newman, M. E.; Watts, D. J., Scaling and percolation in the small-world network model, Phys. Rev. E, 60, 6, 7332, (1999)
[505] Erdös, P.; Rényi, A., On the evolution of random graphs, Publ. Math. Inst. Hungar. Acad. Sci., 5, 17-61, (1960) · Zbl 0103.16301
[506] Barabási, A.-L.; Albert, R., Emergence of scaling in random networks, Science, 286, 5439, 509-512, (1999) · Zbl 1226.05223
[507] Rand, D. G.; Dreber, A.; Ellingsen, T.; Fudenberg, D.; Nowak, M. A., Positive interactions promote public cooperation, Science, 325, 5945, 1272-1275, (2009) · Zbl 1226.91018
[508] Wang, Z.; Kokubo, S.; Jusup, M.; Tanimoto, J., Universal scaling for the dilemma strength in evolutionary games, Phys. Life Rev., 14, 1-30, (2015)
[509] Perc, M.; Gómez-Gardeñes, J.; Szolnoki, A.; Floría, L. M.; Moreno, Y., Evolutionary dynamics of group interactions on structured populations: a review, J. R. Soc. Interface, 10, 80, 20120997, (2013)
[510] Hardin, G., The tragedy of the commons, Science, 162, 3859, 1243-1248, (1968)
[511] Pingle, M., Imitation versus rationality: an experimental perspective on decision making, J. Socio-Econ., 24, 2, 281-315, (1995)
[512] Blume, L. E., The statistical mechanics of strategic interaction, Games Econom. Behav., 5, 3, 387-424, (1993) · Zbl 0797.90123
[513] Perc, M.; Gómez-Gardeñes, J.; Szolnoki, A.; Floría, L. M.; Moreno, Y., Evolutionary dynamics of group interactions on structured populations: A review, J. R. Soc. Interface, 6, 20120997, (2013)
[514] Colgrove, J., (State of Immunity: the Politics of Vaccination in Twentieth-Century America, vol. 16, (2006), Univ of California Press)
[515] Wu, Z.-X.; Zhang, H.-F., Peer pressure is a double-edged sword in vaccination dynamics, Europhys. Lett., 104, 1, 10002, (2013)
[516] Liu, X.-T.; Wu, Z.-X.; Zhang, L., Impact of committed individuals on vaccination behavior, Phys. Rev. E, 86, 5, (2012)
[517] Watts, D. J.; Dodds, P. S., Influentials, networks, and public opinion formation, J. Consumer Res., 34, 4, 441-458, (2007)
[518] Szolnoki, A.; Wang, Z.; Perc, M., Wisdom of groups promotes cooperation in evolutionary social dilemmas, Sci. Rep., 2, 576, (2012)
[519] Zhang, H.; Fu, F.; Zhang, W.; Wang, B., Rational behavior is a double-edged sword when considering voluntary vaccination, Physica A, 391, 20, 4807-4815, (2012)
[520] Boccaletti, S.; Latora, V.; Moreno, Y.; Chavez, M.; Hwang, D.-U., Complex networks: structure and dynamics, Phys. Rep., 424, 4-5, 175-308, (2006) · Zbl 1371.82002
[521] Pastor-Satorras, R.; Vespignani, A., Epidemic spreading in scale-free networks, Phys. Rev. Lett., 86, 14, 3200-3203, (2001)
[522] Li, D.; Qin, P.; Wang, H.; Liu, C. L.; Jiang, Y., Epidemics on interconnected lattices, Europhys. Lett., 105, 6, 68004, (2014)
[523] Xia, C.-y.; Wang, Z.; Sanz, J.; Meloni, S.; Moreno, Y., Effects of delayed recovery and nonuniform transmission on the spreading of diseases in complex networks, Physica A, 392, 7, 1577-1585, (2013)
[524] Zhang, H.; Zhang, J.; Zhou, C.; Small, M.; Wang, B., Hub nodes inhibit the outbreak of epidemic under voluntary vaccination, New J. Phys., 12, 2, (2010)
[525] Cardillo, A.; Reyes-Suárez, C.; Naranjo, F.; Gómez-Gardeñes, J., Evolutionary vaccination dilemma in complex networks, Phys. Rev. E, 88, 3, (2013)
[526] Jamison, D. T., External finance of immunization programs: time for a change in paradigm?, Sci. Tech. Publ. Pan Am. Health Organ., 325-332, (2004)
[527] d’Onofrio, A.; Manfredi, P.; Poletti, P., The interplay of public intervention and private choices in determining the outcome of vaccination programmes, PLoS One, 7, 10, (2012), e45653
[528] Zhang, H.-F.; Wu, Z.-X.; Xu, X.-K.; Small, M.; Wang, L.; Wang, B.-H., Impacts of subsidy policies on vaccination decisions in contact networks, Phys. Rev. E, 88, 1, (2013)
[529] Geoffard, P.-Y.; Philipson, T., Disease eradication: private versus public vaccination, Am. Econ. Rev., 87, 1, 222-230, (1997)
[530] Culyer, A. J.; Newhouse, J. P., Handbook of health economics, (2000), Elsevier
[531] Gersovitz, M.; Hammer, J. S., Tax/subsidy policies toward vector-borne infectious diseases, J. Public Econ., 89, 4, 647-674, (2005)
[532] Gersovitz, M.; Hammer, J. S., Infectious diseases, public policy, and the marriage of economics and epidemiology, World Bank Res. Observer, 18, 2, 129-157, (2003)
[533] Zhang, H.-F.; Wu, Z.-X.; Tang, M.; Lai, Y.-C., Effects of behavioral response and vaccination policy on epidemic spreading-an approach based on evolutionary-game dynamics, Sci. Rep., 4, 5666, (2014)
[534] Wang, Z.; Szolnoki, A.; Perc, M., If players are sparse social dilemmas are too: importance of percolation for evolution of cooperation, Sci. Rep., 2, 369, (2012)
[535] Gao, Y.; Du, W.; Yan, G., Selectively-informed particle swarm optimization, Sci. Rep., 5, 9295, (2015)
[536] Li, L.; Peng, H.; Kurths, J.; Yang, Y.; Schellnhuber, H. J., Chaos-order transition in foraging behavior of ants, Proc. Natl. Acad. Sci., 111, 23, 8392-8397, (2014)
[537] Du, W.; Ying, W.; Yan, G.; Zhu, Y.; Cao, X., Heterogeneous strategy particle swarm optimization, IEEE Trans. Circuits Syst. II, (2016)
[538] Du, W.; Cao, X.; Hu, M.; Wang, W., Asymmetric cost in snowdrift game on scale-free networks, Europhys. Lett., 87, 6, 60004, (2009)
[539] Mobilia, M., Does a single zealot affect an infinite group of voters?, Phys. Rev. Lett., 91, 2, (2003)
[540] Galam, S., Heterogeneous beliefs, segregation, and extremism in the making of public opinions, Phys. Rev. E, 71, 4, (2005)
[541] Xie, J.; Sreenivasan, S.; Korniss, G.; Zhang, W.; Lim, C.; Szymanski, B. K., Social consensus through the influence of committed minorities, Phys. Rev. E, 84, 1, (2011) · Zbl 1317.91007
[542] Singh, P.; Sreenivasan, S.; Szymanski, B. K.; Korniss, G., Accelerating consensus on coevolving networks: the effect of committed individuals, Phys. Rev. E, 85, 4, (2012)
[543] Masuda, N., Evolution of cooperation driven by zealots, Sci. Rep., 2, 646, (2012)
[544] Liu, X.-T.; Wu, Z.-X.; Zhang, L., Impact of committed individuals on vaccination behavior, Phys. Rev. E, 86, 5, (2012)
[545] Fukuda, E.; Tanimoto, J., Effects of stubborn decision-makers on vaccination and disease propagation in social networks, Int. J. Autom. Logist., 2, 1-2, 78-92, (2016)
[546] Zhang, H.-F.; Yang, Z.; Wu, Z.-X.; Wang, B.-H.; Zhou, T., Braess’s paradox in epidemic game: better condition results in less payoff, Sci. Rep., 3, 3292, (2013)
[547] Schimit, P.; Monteiro, L., A vaccination game based on public health actions and personal decisions, Ecol. Model., 222, 9, 1651-1655, (2011)
[548] Parker, A. A.; Staggs, W.; Dayan, G. H.; Ortega-Sánchez, I. R.; Rota, P. A.; Lowe, L.; Boardman, P.; Teclaw, R.; Graves, C.; LeBaron, C. W., Implications of a 2005 measles outbreak in indiana for sustained elimination of measles in the united states, N. Engl. J. Med., 355, 5, 447-455, (2006)
[549] May, T.; Silverman, R. D., Clustering of exemptions as a collective action threat to herd immunity, Vaccine, 21, 11, 1048-1051, (2003)
[550] Braess, P.-D. D.D., Über ein paradoxon aus der verkehrsplanung, Unternehmensforschung, 12, 1, 258-268, (1968) · Zbl 0167.48305
[551] Pala, M.; Baltazar, S.; Liu, P.; Sellier, H.; Hackens, B.; Martins, F.; Bayot, V.; Wallart, X.; Desplanque, L.; Huant, S., Transport inefficiency in branched-out mesoscopic networks: an analog of the braess paradox, Phys. Rev. Lett., 108, 7, (2012)
[552] Wang, Z.; Zhang, H.; Wang, Z., Multiple effects of self-protection on the spreading of epidemics, Chaos Solitons Fractals, 61, 1-7, (2014) · Zbl 1348.92163
[553] Newman, M. E.J., Networks: an introduction, (2010), Oxford University Press New York · Zbl 1195.94003
[554] Newman, M. E.J., Detecting community structure in networks, Eur. Phys. J. B, 38, 2, 321-330, (2004)
[555] Fortunato, S., Community detection in graphs, Phys. Rep., 486, 75-174, (2010)
[556] Perisic, A.; Bauch, C. T., A simulation analysis to characterize the dynamics of vaccinating behaviour on contact networks, BMC Infect. Dis., 9, 1, 1, (2009)
[557] Fine, P. E.; Clarkson, J. A., Individual versus public priorities in the determination of optimal vaccination policies, Amer. J. Epidemiol., 124, 6, 1012-1020, (1986)
[558] Bauch, C. T.; Galvani, A. P.; Earn, D. J., Group interest versus self-interest in smallpox vaccination policy, Proc. Natl. Acad. Sci., 100, 18, 10564-10567, (2003) · Zbl 1065.92038
[559] Barrett, S., The smallpox eradication game, Public Choice, 130, 1-2, 179-207, (2007)
[560] Brilliant, L. B., The management of smallpox eradication in India, (1985), University of Michigan Press Ann Arbor, MI
[561] Gómez-Gardeñes, J.; Gómez, S.; Arenas, A.; Moreno, Y., Explosive synchronization transitions in scale-free networks, Phys. Rev. Lett., 106, 12, (2011)
[562] Achlioptas, D.; D’Souza, R. M.; Spencer, J., Explosive percolation in random networks, Science, 323, 5920, 1453-1455, (2009) · Zbl 1226.05221
[563] Kemper, J. T., On the identification of superspreaders for infectious disease, Math. Biosci., 48, 1, 111-127, (1980) · Zbl 0442.92024
[564] Woolhouse, M. E.; Dye, C.; Etard, J.-F.; Smith, T.; Charlwood, J.; Garnett, G.; Hagan, P.; Hii, J.; Ndhlovu, P.; Quinnell, R., Heterogeneities in the transmission of infectious agents: implications for the design of control programs, Proc. Natl. Acad. Sci., 94, 1, 338-342, (1997)
[565] Galvani, A. P.; May, R. M., Epidemiology: dimensions of superspreading, Nature, 438, 7066, 293-295, (2005)
[566] Lloyd-Smith, J. O.; Schreiber, S. J.; Kopp, P. E.; Getz, W. M., Superspreading and the effect of individual variation on disease emergence, Nature, 438, 7066, 355-359, (2005)
[567] Stein, R. A., Lessons from outbreaks of H1N1 influenza, Ann. Intern. Med., 151, 1, 59-62, (2009)
[568] Cohen, R.; Havlin, S.; Ben-Avraham, D., Efficient immunization strategies for computer networks and populations, Phys. Rev. Lett., 91, (2003)
[569] Wang, L.; Li, X., Spatial epidemiology of networked metapopulation: an overview, Chin. Sci. Bull., 59, 28, 3511-3522, (2014)
[570] Szolnoki, A.; Szabó, G., Cooperation enhanced by inhomogeneous activity of teaching for evolutionary prisoner’s dilemma games, Europhys. Lett., 77, 3, 30004, (2007)
[571] Kokubo, S.; Wang, Z.; Tanimoto, J., Spatial reciprocity for discrete, continuous and mixed strategy setups, Appl. Math. Comput., 259, 552-568, (2015) · Zbl 1390.91055
[572] Xia, S.; Liu, J., A computational approach to characterizing the impact of social influence on individuals vaccination decision making, PLoS One, 8, 4, (2013), e60373
[573] Salathé, M.; Bonhoeffer, S., The effect of opinion clustering on disease outbreaks, J. R. Soc. Interface, 5, 29, 1505-1508, (2008)
[574] D. Schmid, H. Holzmann, S. Abele, S. Kasper, S. König, S. Meusburger, H. Hrabcik, A. Luckner-Hornischer, E. Bechter, A. DeMartin, et al., An ongoing multi-state outbreak of measles linked to non-immune anthroposophic communities in Austria, Germany, and Norway, March-April 2008, Eurosurveillance 13 (16).
[575] J. Richard, V. Masserey-Spicher, S. Santibanez, A. Mankertz, Measles outbreak in Switzerland-an update relevant for the European football championship (EURO 2008), 13 (1-3) (2008) 1-4.
[576] Zhang, T.; Fu, X.; Ma, S.; Xiao, G.; Wong, L.; Kwoh, C.; Lees, M.; Lee, G.; Hung, T., Evaluating temporal factors in combined interventions of workforce shift and school closure for mitigating the spread of influenza, PLoS One, 7, 3, (2012), e32203
[577] Anderson, R.; May, R.; Anderson, B., Infectious diseases of humans: dynamics and control, (1992), Oxford University Press Oxford
[578] Orenstein, W. A.; Samuel, K. L.; Hinman, A. R., Summary and conclusions: measles elimination meeting, 16-17 March 2000, J. Infect. Dis., 189, Suppl. 1, S43-S47, (2004)
[579] Salathé, M.; Khandelwal, S., Assessing vaccination sentiments with online social media: implications for infectious disease dynamics and control, PLoS Comput. Biol., 7, 10, (2011), e1002199
[580] Wang, S.-J.; Wang, Z.; Jin, T.; Boccaletti, S., Emergence of disassortative mixing from pruning nodes in growing scale-free networks, Sci. Rep., 4, 7536, (2014)
[581] Qu, J.; Wang, S.-J.; Jusup, M.; Wang, Z., Effects of random rewiring on the degree correlation of scale-free networks, Sci. Rep., 5, 15450, (2015)
[582] Barclay, V. C.; Smieszek, T.; He, J.; Cao, G.; Rainey, J. J.; Gao, H.; Uzicanin, A.; Salathé, M., Positive network assortativity of influenza vaccination at a high school: implications for outbreak risk and herd immunity, PLoS One, 9, 2, (2014), e87042
[583] Wu, Q.; Fu, X.; Small, M.; Xu, X.-J., The impact of awareness on epidemic spreading in networks, Chaos, 22, 1, (2012) · Zbl 1331.92154
[584] Valdez, L.; Macri, P. A.; Braunstein, L. A., Intermittent social distancing strategy for epidemic control, Phys. Rev. E, 85, 3, (2012)
[585] Zhang, H.-F.; Xie, J.-R.; Tang, M.; Lai, Y.-C., Suppression of epidemic spreading in complex networks by local information based behavioral responses, Chaos, 24, 4, (2014) · Zbl 1361.92074
[586] Nowak, A.; Szamrej, J.; Latané, B., From private attitude to public opinion: A dynamic theory of social impact, Psychol. Rev., 97, 3, 362, (1990)
[587] Lyst, J.; Kacperski, K.; Schweitzer, F., Social impact models of opinion dynamics, Annu. Rev. Comput. Phys., 9, 253-273, (2002)
[588] Kelso, J. K.; Milne, G. J.; Kelly, H., Simulation suggests that rapid activation of social distancing can arrest epidemic development due to a novel strain of influenza, BMC Public Health, 9, 1, 117, (2009)
[589] Reluga, T. C., Game theory of social distancing in response to an epidemic, PLoS Comput. Biol., 6, 5, (2010), e1000793
[590] Karsai, M.; Perra, N.; Vespignani, A., Time varying networks and the weakness of strong ties, Sci. Rep., 4, 4001, (2014)
[591] Holme, P.; Saramäki, J., Temporal networks, Phys. Rep., 519, 3, 97-125, (2012)
[592] Liu, S.; Perra, N.; Karsai, M.; Vespignani, A., Controlling contagion processes in activity driven networks, Phys. Rev. Lett., 112, 11, (2014)
[593] Starnini, M.; Machens, A.; Cattuto, C.; Barrat, A.; Pastor-Satorras, R., Immunization strategies for epidemic processes in time-varying contact networks, J. Theoret. Biol., 337, 89-100, (2013)
[594] Morsky, B.; Bauch, C. T., Outcome inelasticity and outcome variability in behaviour-incidence models: an example from an seir infection on a dynamic network, Comput. Math. Methods Med., 2012, (2012) · Zbl 1261.92035
[595] Perra, N.; Gonçalves, B.; Pastor-Satorras, R.; Vespignani, A., Activity driven modeling of time varying networks, Sci. Rep., 2, 469, (2012)
[596] Han, D.; Sun, M., An evolutionary vaccination game in the modified activity driven network by considering the closeness, Physica A, 443, 49-57, (2016)
[597] Paulsen, J.; Langbehn, D.; Stout, J.; Aylward, E.; Ross, C.; Nance, M.; Guttman, M.; Johnson, S.; MacDonald, M.; Beglinger, L., Detection of huntingtons disease decades before diagnosis: the predict-hd study, J. Neurol. Neurosurg. Psychiatry, 79, 8, 874-880, (2008)
[598] Guerra, B.; Gomez-Gardenes, J.; Latora, V., Adaptive growing networks coevolving with the spread of diseases, Int. J. Bifurcation Chaos, 22, 07, 1250168, (2012) · Zbl 1270.68243
[599] Brockmann, D.; Helbing, D., The hidden geometry of complex, network-driven contagion phenomena, Science, 342, 6164, 1337-1342, (2013)
[600] Balcan, D.; Colizza, V.; Gonçalves, B.; Hu, H.; Ramasco, J. J.; Vespignani, A., Multiscale mobility networks and the spatial spreading of infectious diseases, Proc. Natl. Acad. Sci., 106, 51, 21484-21489, (2009)
[601] Poggio, T.; Girosi, F., Regularization algorithms for learning that are equivalent to multilayer networks, Science, 247, 4945, 978-982, (1990) · Zbl 1226.92005
[602] Hornik, K.; Stinchcombe, M.; White, H., Multilayer feedforward networks are universal approximators, Neural Net., 2, 5, 359-366, (1989) · Zbl 1383.92015
[603] Wang, Y.; Xiao, G., Epidemics spreading in interconnected complex networks, Phys. Lett. A, 376, 42, 2689-2696, (2012) · Zbl 1266.05160
[604] Halu, A.; Zhao, K.; Baronchelli, A.; Bianconi, G., Connect and win: the role of social networks in political elections, Europhys. Lett., 102, 1, 16002, (2013)
[605] Zhang, X.; Boccaletti, S.; Guan, S.; Liu, Z., Explosive synchronization in adaptive and multilayer networks, Phys. Rev. Lett., 114, 3, (2015)
[606] Wang, Z.; Wang, L.; Szolnoki, A.; Perc, M., Evolutionary games on multilayer networks: a colloquium, Eur. Phys. J. B, 88, 5, 1-15, (2015)
[607] Wang, Z.; Wang, L.; Perc, M., Degree mixing in multilayer networks impedes the evolution of cooperation, Phys. Rev. E, 89, 5, (2014)
[608] Bauch, C. T.; Galvani, A. P., Social factors in epidemiology, Science, 342, 6154, 47-49, (2013)
[609] Wang, W.; Tang, M.; Shu, P.; Wang, Z., Dynamics of social contagions with heterogeneous adoption thresholds:crossover phenomena in phase transition, New J. Phys., 18, (2016)
[610] Wang, W.; Tang, M.; Zhang, H.-F.; Lai, Y.-C., Dynamics of social contagions with memory of nonredundant information, Phys. Rev. E, 92, (2015)
[611] Fukuda, E.; Tanimoto, J.; Akimoto, M., Influence of breaking the symmetry between disease transmission and information propagation networks on stepwise decisions concerning vaccination, Chaos Solitons Fractals, 80, 47-55, (2015)
[612] Eames, K. T., Networks of influence and infection: parental choices and childhood disease, J. R. Soc. Interface, 6, 38, 811-814, (2009)
[613] Leask, J.; Chapman, S.; Hawe, P.; Burgess, M., What maintains parental support for vaccination when challenged by anti-vaccination messages? a qualitative study, Vaccine, 24, 49, 7238-7245, (2006)
[614] Abbasi, K., MMR and the value of word of mouth in social networks, J. R. Soc. Med., 101, 5, 215-216, (2008)
[615] Heathcock, R.; Watts, C., Measles outbreaks in London, united kingdom-a preliminary report, Euro Surveill, 13, 15, 1, (2008)
[616] Cutts, F. T.; Izurieta, H. S.; Rhoda, D. A., Measuring coverage in MNCH: design, implementation, and interpretation challenges associated with tracking vaccination coverage using household surveys, PLoS Med., 10, 5, (2013), e1001404
[617] Slifka, M. K.; Amanna, I., How advances in immunology provide insight into improving vaccine efficacy, Vaccine, 32, 25, 2948-2957, (2014)
[618] Wagner, K. S.; White, J. M.; Andrews, N. J.; Borrow, R.; Stanford, E.; Newton, E.; Pebody, R. G., Immunity to tetanus and diphtheria in the UK in 2009, Vaccine, 30, 49, 7111-7117, (2012)
[619] Cutts, F.; Hall, A., Vaccines for neonatal viral infections: hepatitis B vaccine, Expert Rev. Vaccines, 3, 4, 349-352, (2004)
[620] Tapia, M. D.; Pasetti, M. F.; Cuberos, L.; Sow, S. O.; Doumbia, M. N.; Bagayogo, M.; Kotloff, K. L.; Levine, M. M., Measurement of tetanus antitoxin in oral fluid: a tool to conduct serosurveys, Pediatr. Infect. Dis. J., 25, 9, 819-825, (2006)
[621] Pebody, R.; Gay, N.; Giammanco, A.; Baron, S.; Schellekens, J.; Tischer, A.; Ölander, R.-M.; Andrews, N.; Edmunds, W.; Lecoeur, H., The seroepidemiology of bordetella pertussis infection in western Europe, Epidemiol. Infect., 133, 01, 159-171, (2005)
[622] Saemann-Ischenko, G.; Tillmanns, B.; Kösters, K.; Riffelmann, M.; Von Koenig, W. C., Stability of antibodies to bordetella antigens in German adults, Eur. J. Clin. Microbiol. Infect. Dis., 20, 12, 850-853, (2001)
[623] Cattaneo, L. A.; Reed, G. W.; Haase, D. H.; Wills, M. J.; Edwards, K. M., The seroepidemiology of bordetella pertussis infections: a study of persons ages 1-65 years, J. Infect. Dis., 173, 5, 1256-1259, (1996)
[624] Teunis, P.; Van Der Heijden, O.; De Melker, H.; Schellekens, J.; Versteegh, F.; Kretzschmar, M., Kinetics of the igg antibody response to pertussis toxin after infection with B. pertussis, Epidemiol. Infect., 129, 03, 479-489, (2002)
[625] Lavine, J. S.; King, A. A.; Bjørnstad, O. N., Natural immune boosting in pertussis dynamics and the potential for long-term vaccine failure, Proc. Natl. Acad. Sci., 108, 17, 7259-7264, (2011)
[626] Weinberg, G. A.; Szilagyi, P. G., Vaccine epidemiology: efficacy, effectiveness, and the translational research roadmap, J. Infect. Dis., 201, 11, 1607-1610, (2010)
[627] Osterholm, M. T.; Kelley, N. S.; Sommer, A.; Belongia, E. A., Efficacy and effectiveness of influenza vaccines: a systematic review and meta-analysis, Lancet Infect. Dis., 12, 1, 36-44, (2012)
[628] La Torre, G.; de Waure, C.; Chiaradia, G.; Mannocci, A.; Ricciardi, W., HPV vaccine efficacy in preventing persistent cervical HPV infection: a systematic review and meta-analysis, Vaccine, 25, 50, 8352-8358, (2007)
[629] Ward, J. I.; Cherry, J. D.; Chang, S.-J.; Partridge, S.; Lee, H.; Treanor, J.; Greenberg, D. P.; Keitel, W.; Barenkamp, S.; Bernstein, D. I., Efficacy of an acellular pertussis vaccine among adolescents and adults, N. Engl. J. Med., 353, 15, 1555-1563, (2005)
[630] van Boven, M.; Kretzschmar, M.; Wallinga, J.; O’Neill, P. D.; Wichmann, O.; Hahné, S., Estimation of measles vaccine efficacy and critical vaccination coverage in a highly vaccinated population, J. R. Soc. Interface, 7, 52, 1537-1544, (2010)
[631] Orenstein, W. A.; Bernier, R. H.; Dondero, T. J.; Hinman, A. R.; Marks, J.; Bart, K.; Sirotkin, B., Field evaluation of vaccine efficacy, Bull. World. Health. Organ., 63, 6, 1055, (1985)
[632] Althaus, C. L.; Salathé, M., Measles vaccination coverage and cases among vaccinated persons, Emerg. Infect. Diseases, 21, 8, 1480, (2015)
[633] Overview of influenza surveillance in the united states, http://www.cdc.gov/flu/weekly/overview.htm.
[634] Chunara, R.; Smolinski, M. S.; Brownstein, J. S., Why we need crowdsourced data in infectious disease surveillance, Current Infect. Dis. Rep., 15, 4, 316-319, (2013)
[635] Vespignani, A., Predicting the behavior of techno-social systems, Science, 325, 5939, 425, (2009) · Zbl 1226.00033
[636] Gonçalves, B.; Perra, N., Social phenomena: from data analysis to models, (2015), Springer
[637] Lazer, D.; Pentland, A. S.; Adamic, L.; Aral, S.; Barabasi, A. L.; Brewer, D.; Christakis, N.; Contractor, N.; Fowler, J.; Gutmann, M., Computational social science, Science (New York, NY), 323, 5915, 721, (2009)
[638] Piwek, L.; Ellis, D. A.; Andrews, S.; Joinson, A., The rise of consumer health wearables: promises and barriers, PLoS Med., 13, 2, (2016), e1001953
[639] Salathé, M.; Bengtsson, L.; Bodnar, J.; Brewer, D.; Brownstein, J. S.; Buckee, C.; Campbell, E. M.; Cattuto, C.; Khandelwal, S.; Mabry, P. L.; Vespignani, A., Digital epidemiology, PLoS Comput. Biol., 8, 7, (2012)
[640] Chunara, R.; Freifeld, C. C.; Brownstein, J. S., New technologies for reporting real-time emergent infections, Parasitol., 139, 14, 1843-1851, (2012)
[641] Hartley, D. M.; Nelson, N. P.; Arthur, R.; Barboza, P.; Collier, N.; Lightfoot, N.; Linge, J.; Goot, E.; Mawudeku, A.; Madoff, L., An overview of Internet biosurveillance, Clin. Microbiol. Infect., 19, 11, 1006-1013, (2013)
[642] Wójcik, O. P.; Brownstein, J. S.; Chunara, R.; Johansson, M. A., Public health for the people: participatory infectious disease surveillance in the digital age, Emerg. Themes Epidem., 11, 1, 7, (2014)
[643] Kass-Hout, T. A.; Alhinnawi, H., Social media in public health, Br. Med. Bull., 108, 1, 5-24, (2013)
[644] Flu near you, http://flunearyou.org.
[645] Smolinski, M. S.; Crawley, A. W.; Baltrusaitis, K.; Chunara, R.; Olsen, J. M.; Wójcik, O.; Santillana, M.; Nguyen, A.; Brownstein, J. S., Flu near you: crowdsourced symptom reporting spanning 2 influenza seasons, Am. J. Public Health., 105, 10, 2124-2130, (2015)
[646] Influenzanet, https://www.influenzanet.eu/.
[647] Paolotti, D.; Carnahan, A.; Colizza, V.; Eames, K.; Edmunds, J.; Gomes, G.; Koppeschaar, C.; Rehn, M.; Smallenburg, R.; Turbelin, C.; Van Noort, S.; Vespignani, A., Web-based participatory surveillance of infectious diseases: the influenzanet participatory surveillance experience, Clin. Microbiol. Infect., 20, 1, 17-21, (2014)
[648] Chunara, R.; Goldstein, E.; Patterson-Lomba, O.; Brownstein, J. S., Estimating influenza attack rates in the united states using a participatory cohort, Sci. Rep., 5, 9540, (2015)
[649] Zhang, Q.; Gioannini, C.; Paolotti, D.; Perra, N.; Perrotta, D.; Quaggiotto, M.; Tizzoni, M.; Vespignani, A., Social data mining and seasonal influenza forecasts: the fluoutlook platform, (Machine Learning and Knowledge Discovery in Databases, (2015), Springer International Publishing), 237-240
[650] Edmunds, W. J.; Funk, S., Using the Internet to estimate influenza vaccine effectiveness, Exp. Rev. Vaccines, 11, 9, 1027, (2012)
[651] Barrat, A.; Cattuto, C., Face-to-face interactions, (Social Phenomena, (2015), Springer International Publishing), 37-57
[652] Danon, L.; Read, J. M.; House, T. A.; Vernon, M. C.; Keeling, M. J., Social encounter networks: characterizing great britain, Proc. R. Soc. Lond. Biol., 280, 1765, 20131037, (2013)
[653] Van Kerckhove, K.; Hens, N.; Edmunds, W. J.; Eames, K. T., The impact of illness on social networks: implications for transmission and control of influenza, Am. J. Epidemiol., 178, 11, 1655-1662, (2013)
[654] Smieszek, T.; Burri, E.; Scherzinger, R.; Scholz, R. W., Collecting close-contact social mixing data with contact diaries: reporting errors and biases, Epidemiol. Infect., 140, 04, 744-752, (2012)
[655] Smieszek, T.; Barclay, V. C.; Seeni, I.; Rainey, J. J.; Gao, H.; Uzicanin, A.; Salathé, M., How should social mixing be measured: comparing web-based survey and sensor-based methods, BMC Infect. Dis., 14, 1, 136, (2014)
[656] Read, J. M.; Eames, K. T.; Edmunds, W. J., Dynamic social networks and the implications for the spread of infectious disease, J. R. Soc. Interface, 5, 26, 1001-1007, (2008)
[657] Hui, P.; Chaintreau, A.; Scott, J.; Gass, R.; Crowcroft, J.; Diot, C., Pocket switched networks and human mobility in conference environments, (Proceedings of the 2005 ACM SIGCOMM Workshop on Delay-tolerant Networking, (2005), ACM), 244-251
[658] O’Neill, E.; Kostakos, V.; Kindberg, T.; Penn, A.; Fraser, D. S.; Jones, T., Instrumenting the city: developing methods for observing and understanding the digital cityscape, (UbiComp 2006: Ubiquitous Computing, (2006), Springer), 315-332
[659] Eagle, N.; Pentland, A., Reality mining: sensing complex social systems, Pers. Ubiquitous Comput., 10, 4, 255-268, (2006)
[660] Pentland, A.; Heibeck, T., Honest signals, (2008), MIT Oress Cambridge, MA
[661] Raento, M.; Oulasvirta, A.; Eagle, N., Smartphones an emerging tool for social scientists, Sociol. Methods Res., 37, 3, 426-454, (2009)
[662] Hashemian, M. S.; Stanley, K. G.; Osgood, N., Flunet: automated tracking of contacts during flu season, (Modeling and Optimization in Mobile, Ad Hoc and Wireless Networks (WiOpt), 2010 Proceedings of the 8th International Symposium on, (2010), IEEE), 348-353
[663] Cattuto, C.; Van den Broeck, W.; Barrat, A.; Colizza, V.; Pinton, J.-F.; Vespignani, A., Dynamics of person-to-person interactions from distributed rfid sensor networks, PLoS One, 5, 7, (2010), e11596
[664] N. Kiukkonen, J. Blom, O. Dousse, D. Gatica-Perez, J. Laurila, Towards rich mobile phone datasets: Lausanne data collection campaign, Proc. ICPS, Berlin.
[665] Liu, S.; Striegel, A., Accurate extraction of face-to-face proximity using smartphones and Bluetooth, (Computer Communications and Networks, ICCCN, 2011 Proceedings of 20th International Conference on, (2011), IEEE), 1-5
[666] Olguín, D. O.; Madan, A.; Cebrian, M.; Pentland, A. S., Mobile sensing technologies and computational methods for collective intelligence, (Next Generation Data Technologies for Collective Computational Intelligence, (2011), Springer), 575-597
[667] Aharony, N.; Pan, W.; Ip, C.; Khayal, I.; Pentland, A., Social fMRI: investigating and shaping social mechanisms in the real world, Pervasive Mobile Comput., 7, 6, 643-659, (2011)
[668] Hornbeck, T.; Naylor, D.; Segre, A. M.; Thomas, G.; Herman, T.; Polgreen, P. M., Using sensor networks to study the effect of peripatetic healthcare workers on the spread of hospital-associated infections, J. Infect. Dis., (2012), jis542
[669] Striegel, A.; Liu, S.; Meng, L.; Poellabauer, C.; Hachen, D.; Lizardo, O., Lessons learned from the netsense smartphone study, (ACM SIGCOMM Computer Communication Review, vol. 43, (2013), ACM), 51-56
[670] Stopczynski, A.; Sekara, V.; Sapiezynski, P.; Cuttone, A.; Madsen, M. M.; Larsen, J. E.; Lehmann, S., Measuring large-scale social networks with high resolution, PLoS One, 9, 4, (2014), e95978
[671] Kazandjieva, M. A.; Lee, J. W.; Salathé, M.; Feldman, M. W.; Jones, J. H.; Levis, P., Experiences in measuring a human contact network for epidemiology research, (Proceedings of the 6th Workshop on Hot Topics in Embedded Networked Sensors, (2010), ACM), 7
[672] Mastrandrea, R.; Fournet, J.; Barrat, A., Contact patterns in a high school: a comparison between data collected using wearable sensors, contact diaries and friendship surveys, PLoS One, 10, 9, (2015), e0136497
[673] Jensen, P.; Morini, M.; Karsai, M.; Venturini, T.; Vespignani, A.; Jacomy, M.; Cointet, J.-P.; Mercklé, P.; Fleury, E., Detecting global bridges in networks, J. Complex Netw., (2015), cnv022
[674] V. Sekara, A. Stopczynski, S. Lehmann, The fundamental structures of dynamic social networks, arXiv preprint, arXiv:1506.04704.
[675] Holme, P., Modern temporal network theory: a colloquium, Eur. Phys. J. B, 88, 9, 1-30, (2015)
[676] Barabasi, A.-L., The origin of bursts and heavy tails in human dynamics, Nature, 435, 7039, 207-211, (2005)
[677] Min, B.; Goh, K.-I.; Vazquez, A., Spreading dynamics following bursty human activity patterns, Phys. Rev. E, 83, 3, (2011)
[678] Stehlé, J.; Voirin, N.; Barrat, A.; Cattuto, C.; Isella, L.; Pinton, J.-F.; Quaggiotto, M.; Van den Broeck, W.; Régis, C.; Lina, B., High-resolution measurements of face-to-face contact patterns in a primary school, PLoS One, 6, 8, (2011), e23176
[679] Karsai, M.; Kivelä, M.; Pan, R.; Kaski, K.; Kertész, J.; Barabási, A.-L.; Saramäki, J., Small but slow world: how network topology and burstiness slow down spreading, Phys. Rev. E, 83, 2, (2011)
[680] Miritello, G.; Moro, E.; Lara, R., Dynamical strength of social ties in information spreading, Phys. Rev. E, 83, 4, (2011)
[681] Vazquez, A.; Racz, B.; Lukacs, A.; Barabasi, A.-L., Impact of non-Poissonian activity patterns on spreading processes, Phys. Rev. Lett., 98, 15, (2007)
[682] Karrer, B.; Newman, M. E., Message passing approach for general epidemic models, Phys. Rev. E, 82, 1, (2010)
[683] Rocha, L. E.; Liljeros, F.; Holme, P., Simulated epidemics in an empirical spatiotemporal network of 50,185 sexual contacts, PLoS Comput. Biol., 7, 3, (2011), e1001109
[684] Takaguchi, T.; Masuda, N.; Holme, P., Bursty communication patterns facilitate spreading in a threshold-based epidemic dynamics, PLoS One, 8, 7, (2013), e68629
[685] Morris, M.; Kretzschmar, M., Concurrent partnerships and transmission dynamics in networks, Social Networks, 17, 3, 299-318, (1995)
[686] Stehlé, J.; Voirin, N.; Barrat, A.; Cattuto, C.; Colizza, V.; Isella, L.; Régis, C.; Pinton, J.-F.; Khanafer, N.; Van den Broeck, W., Simulation of an SEIR infectious disease model on the dynamic contact network of conference attendees, BMC Med., 9, 1, 87, (2011)
[687] Masuda, N.; Holme, P., Predicting and controlling infectious disease epidemics using temporal networks, F1000 prime reports, 5, 6, (2013)
[688] Moody, J., The importance of relationship timing for diffusion, Social Forces, 81, 1, 25-56, (2002)
[689] Liu, S.-Y.; Baronchelli, A.; Perra, N., Contagion dynamics in time-varying metapopulation networks, Phys. Rev. E, 87, 3, (2013)
[690] Riolo, C. S.; Koopman, J. S.; Chick, S. E., Methods and measures for the description of epidemiologic contact networks, J. Urban Health, 78, 3, 446-457, (2001)
[691] Fefferman, N.; Ng, K., How disease models in static networks can fail to approximate disease in dynamic networks, Phys. Rev. E, 76, 3, (2007)
[692] Zhu, Y.; Li, D.; Guo, W.; Zhang, F., Effect of heterogeneity of vertex activation on epidemic spreading in temporal networks, Math. Probl. Eng., 2014, (2014)
[693] Horváth, D. X.; Kertész, J., Spreading dynamics on networks: the role of burstiness, topology and non-stationarity, New J. Phys., 16, 7, (2014)
[694] Machens, A.; Gesualdo, F.; Rizzo, C.; Tozzi, A. E.; Barrat, A.; Cattuto, C., An infectious disease model on empirical networks of human contact: bridging the gap between dynamic network data and contact matrices, BMC Infect. Dis., 13, 1, 1, (2013)
[695] Starnini, M.; Pastor-Satorras, R., Temporal percolation in activity-driven networks, Phys. Rev. E, 89, 3, (2014)
[696] Sun, K.; Baronchelli, A.; Perra, N., Contrasting effects of strong ties on SIR and SIS processes in temporal networks, Eur. Phys. J. B, 88, 12, 1-8, (2015)
[697] Han, D.; Sun, M.; Li, D., Epidemic process on activity-driven modular networks, Physica A, 432, 354-362, (2015)
[698] Sunny, A.; Kotnis, B.; Kuri, J., Dynamics of history-dependent epidemics in temporal networks, Phys. Rev. E, 92, 2, (2015)
[699] Holme, P.; Masuda, N., The basic reproduction number as a predictor for epidemic outbreaks in temporal networks, PLoS One, 10, 3, (2015), e0120567
[700] Liljeros, F.; Giesecke, J.; Holme, P., The contact network of inpatients in a regional healthcare system. a longitudinal case study, Math. Popul. Stud., 14, 4, 269-284, (2007) · Zbl 1187.91165
[701] Holme, P.; Liljeros, F., Birth and death of links control disease spreading in empirical contact networks, Sci. Rep., 4, 4999, (2014)
[702] Toth, D. J.; Leecaster, M.; Pettey, W. B.; Gundlapalli, A. V.; Gao, H.; Rainey, J. J.; Uzicanin, A.; Samore, M. H., The role of heterogeneity in contact timing and duration in network models of influenza spread in schools, J. R. Soc. Interface, 12, 108, 20150279, (2015)
[703] Ribeiro, B.; Perra, N.; Baronchelli, A., Quantifying the effect of temporal resolution on time-varying networks, Sci. Rep., 3, 3006, (2013)
[704] Tomasello, M. V.; Perra, N.; Tessone, C. J.; Karsai, M.; Schweitzer, F., The role of endogenous and exogenous mechanisms in the formation of r&d networks, Sci. Rep., 4, 5679, (2014)
[705] Moinet, A.; Starnini, M.; Pastor-Satorras, R., Burstiness and aging in social temporal networks, Phys. Rev. Lett., 114, 10, (2015)
[706] E. Ubaldi, N. Perra, M. Karsai, A. Vezzani, R. Burioni, A. Vespignani, Asymptotic theory for the dynamic of networks with heterogenous social capital allocation, arXiv preprint arXiv:1509.04563.
[707] Fournet, J.; Barrat, A., Contact patterns among high school students, PLoS One, 9, 9, (2014), e107878
[708] Keeling, M., The implications of network structure for epidemic dynamics, Theoret. Popul. Biol., 67, 1, 1-8, (2005) · Zbl 1072.92043
[709] Miller, J. C., Spread of infectious disease through clustered populations, J. R. Soc. Interface, rsif-2008, (2009)
[710] Starnini, M.; Baronchelli, A.; Pastor-Satorras, R., Modeling human dynamics of face-to-face interaction networks, Phys. Rev. Lett., 110, (2013)
[711] M. Starnini, A. Baronchelli, R. Pastor-Satorras, Model reproduces individual, group and collective dynamics of human contact networks, arXiv preprint, arXiv:1409.0507.
[712] Sun, X.; Lu, Z.; Zhang, X.; Salathé, M.; Cao, G., Targeted vaccination based on a wireless sensor system, (Pervasive Computing and Communications, PerCom, 2015 IEEE International Conference on, (2015), IEEE), 215-220
[713] M. Génois, C.L. Vestergaard, J. Fournet, A. Panisson, I. Bonmarin, A. Barrat, Data on face-to-face contacts in an office building suggests a low-cost vaccination strategy based on community linkers, arXiv preprint, arXiv:1409.7017.
[714] R. Cohen, S. Havlin, D. ben Avraham, Efficient immunization strategies for computer networks and populations, Phys. Rev. Lett. 91.
[715] Voirin, N.; Payet, C.; Barrat, A.; Cattuto, C.; Khanafer, N.; Régis, C.; Kim, B.; Comte, B.; Casalegno, J.-S.; Lina, B., Combining high-resolution contact data with virological data to investigate influenza transmission in a tertiary care hospital, Infec. Control Hosp. Epidemiol., 36, 03, 254-260, (2015)
[716] Vanhems, P.; Barrat, A.; Cattuto, C.; Pinton, J.-F.; Khanafer, N.; Régis, C.; Kim, B.-a.; Comte, B.; Voirin, N., Estimating potential infection transmission routes in hospital wards using wearable proximity sensors, PLoS One, 8, 9, (2013), e73970
[717] Obadia, T.; Silhol, R.; Opatowski, L.; Temime, L.; Legrand, J.; Thiébaut, A. C.; Herrmann, J.-L.; Fleury, É.; Guillemot, D.; Boëlle, P.-Y., Detailed contact data and the dissemination of staphylococcus aureus in hospitals, PLoS Comput. Biol., 11, 3, (2015), e1004170
[718] Mastrandrea, R.; Soto-Aladro, A.; Brouqui, P.; Barrat, A., Enhancing the evaluation of pathogen transmission risk in a hospital by merging hand-hygiene compliance and contact data: a proof-of-concept study, BMC Res. Notes, 8, 1, 426, (2015)
[719] Cosgrove, S. E., The relationship between antimicrobial resistance and patient outcomes: mortality, length of hospital stay, and health care costs, Clin. Infect. Dis., 42, Suppl. 2, S82-S89, (2006)
[720] Ginsberg, J.; Mohebbi, M. H.; Patel, R. S.; Brammer, L.; Smolinski, M. S.; Brilliant, L., Detecting influenza epidemics using search engine query data, Nature, 457, 7232, 1012-1014, (2008)
[721] Signorini, A.; Segre, A. M.; Polgreen, P. M., The use of twitter to track levels of disease activity and public concern in the US during the influenza A H1N1 pandemic, PLoS One, 6, 5, (2011), e19467
[722] M.J. Paul, M. Dredze, You are what you Tweet: Analyzing Twitter for public health, in: ICWSM, 2011, pp. 265-272.
[723] T. Bodnar, M. Salathé, Validating models for disease detection using Twitter, in: Proceedings of the 22nd International Conference on World Wide Web Companion, International World Wide Web Conferences Steering Committee, 2013, pp. 699-702.
[724] Broniatowski, D. A.; Paul, M. J.; Dredze, M., National and local influenza surveillance through twitter: an analysis of the 2012-2013 influenza epidemic, PLoS One, 8, 12, (2013), e83672
[725] Culotta, A., Towards detecting influenza epidemics by analyzing twitter messages, (Proceedings of the First Workshop on Social Media Analytics, (2010), ACM), 115-122
[726] N. Generous, G. Fairchild, A. Deshpande, S.Y. Del Valle, R. Priedhorsky, Detecting epidemics using Wikipedia article views: A demonstration of feasibility with language as location proxy, arXiv preprint, arXiv:1405.3612.
[727] McIver, D. J.; Brownstein, J. S., Wikipedia usage estimates prevalence of influenza-like illness in the united states in near real-time, PLoS Comput. Biol., 10, 4, (2014), e1003581
[728] Hickmann, K. S.; Fairchild, G.; Priedhorsky, R.; Generous, N.; Hyman, J. M.; Deshpande, A.; Del Valle, S. Y., Forecasting the 2013-2014 influenza season using wikipedia, PLoS Comput. Biol., 11, 5, (2015), e1004239
[729] Nsoesie, E. O.; Buckeridge, D. L.; Brownstein, J. S., Guess who is not coming to dinner? evaluating online restaurant reservations for disease surveillance, J. Med. Internet Res., 16, 1, (2014)
[730] Butler, P.; Ramakrishnan, N.; Nsoesie, E. O.; Brownstein, J. S., Satellite imagery analysis: what can hospital parking lots tell us about a disease outbreak?, Computer, 47, 4, 94-97, (2014)
[731] Collier, N.; Doan, S.; Kawazoe, A.; Goodwin, R. M.; Conway, M.; Tateno, Y.; Ngo, Q.-H.; Dien, D.; Kawtrakul, A.; Takeuchi, K., Biocaster: detecting public health rumors with a web-based text mining system, Bioinformatics, 24, 24, 2940-2941, (2008)
[732] Torii, M.; Yin, L.; Nguyen, T.; Mazumdar, C. T.; Liu, H.; Hartley, D. M.; Nelson, N. P., An exploratory study of a text classification framework for Internet-based surveillance of emerging epidemics, Int. j. Med. Inform., 80, 1, 56-66, (2011)
[733] Google flu trends, http://www.google.org/flutrends/.
[734] The next chapter of google flu trends, http://googleresearch.blogspot.co.uk/2015/08/the-next-chapter-for-flu-trends.html.
[735] A. Signorini, P.M. Polgreen, A.M. Segre, Using Twitter to estimate H1N1 influenza activity, in: 9th Annual Conference of the International Society for Disease Surveillance.
[736] Biggerstaff, M.; Alper, D.; Dredze, M.; Fox, S.; Fung, I. C.-H.; Hickmann, K. S.; Lewis, B.; Rosenfeld, R.; Shaman, J.; Tsou, M.-H., Results from the centers for disease control and prevention’s predict the 2013-2014 influenza season challenge, BMC Infec. Dis., 16, 1, 1, (2016)
[737] Del Vicario, M.; Bessi, A.; Zollo, F.; Petroni, F.; Scala, A.; Caldarelli, G.; Stanley, H. E.; Quattrociocchi, W., The spreading of misinformation online, Proc. Natl. Acad. Sci., 113, 3, 554-559, (2016)
[738] Larson, H. J.; Smith, D. M.; Paterson, P.; Cumming, M.; Eckersberger, E.; Freifeld, C. C.; Ghinai, I.; Jarrett, C.; Paushter, L.; Brownstein, J. S., Measuring vaccine confidence: analysis of data obtained by a media surveillance system used to analyse public concerns about vaccines, Lancet Infect. Dis., 13, 7, 606-613, (2013)
[739] Kata, A., Anti-vaccine activists, web 2.0, and the postmodern paradigm-an overview of tactics and tropes used online by the anti-vaccination movement, Vaccine, 30, 25, 3778-3789, (2012)
[740] Hershey, J. C.; Asch, D. A.; Thumasathit, T.; Meszaros, J.; Waters, V. V., The roles of altruism, free riding, and bandwagoning in vaccination decisions, Org. Behav. Hum. Decis. Process., 59, 2, 177-187, (1994)
[741] Menzies, R.; McIntyre, P., Vaccine preventable diseases and vaccination policy for indigenous populations, Epidemiol. Rev., 28, 1, 71-80, (2006)
[742] Chapman, G. B.; Li, M.; Vietri, J.; Ibuka, Y.; Thomas, D.; Yoon, H.; Galvani, A. P., Using game theory to examine incentives in influenza vaccination behavior, Psychol. Sci., (2012), 0956797612437606
[743] Salathé, M.; Khandelwal, S., Assessing vaccination sentiments with online social media: implications for infectious disease dynamics and control, PLoS Comput. Biol., 7, 10, (2011)
[744] M. Conover, J. Ratkiewicz, M.R. Francisco, B. Gonçalves, F. Menczer, A. Flammini, Political polarization on Twitter, in: Proceedings of the Fifth International AAAI Conference on Weblogs and Social Medi, vol. 133, 2011, pp. 89-96.
[745] Quattrociocchi, W.; Caldarelli, G.; Scala, A., Opinion dynamics on interacting networks: media competition and social influence, Sci. Rep., 4, 4938, (2014)
[746] Salathé, M.; Vu, D. Q.; Khandelwal, S.; Hunter, D. R., The dynamics of health behavior sentiments on a large online social network, EPJ Data Sci., 2, 1, 1-12, (2013)
[747] Stockwell, M. S.; Fiks, A. G., Utilizing health information technology to improve vaccine communication and coverage, Hum. Vaccines Immunother., 9, 8, 1802-1811, (2013)
[748] Witteman, H. O.; Zikmund-Fisher, B. J., The defining characteristics of web 2.0 and their potential influence in the online vaccination debate, Vaccine, 30, 25, 3734-3740, (2012)
[749] Huston, J. E.; Mekaru, S. R.; Kluberg, S.; Brownstein, J. S., Searching the web for influenza vaccines: healthmap vaccine finder, Amer. J. Public Health, 105, 8, (2015), e134-e139
[750] Lazer, D.; Kennedy, R.; King, G.; Vespignani, A., The parable of google flu: traps in big data analysis, Science, 343, 6176, 1203-1205, (2014), URL http://www.sciencemag.org/content/343/6176/1203.short. arXiv:http://www.sciencemag.org/content/343/6176/1203.full.pdf
[751] Olson, D. R.; Konty, K. J.; Paladini, M.; Viboud, C.; Simonsen, L., Reassessing google flu trends data for detection of seasonal and pandemic influenza: a comparative epidemiological study at three geographic scales, PLoS Comput. Biol., 9, 10, (2013), e1003256
[752] Weeg, C.; Schwartz, H. A.; Hill, S.; Merchant, R. M.; Arango, C.; Ungar, L., Using twitter to measure public discussion of diseases: a case study, JMIR Public Health Surveill., 1, 1, (2015), e6
[753] Shaman, J.; Karspeck, A., Forecasting seasonal outbreaks of influenza, Proc. Natl. Acad. Sci., 109, 50, 20425-20430, (2012), URL http://www.pnas.org/content/109/50/20425.abstract. arXiv:http://www.pnas.org/content/109/50/20425.full.pdf+html
[754] The world in 2014: ICT facts and figures. International telecommunication union, http://www.itu.int/.
[755] Blondel, V. D.; Decuyper, A.; Krings, G., A survey of results on mobile phone datasets analysis, EPJ Data Sci., 4, 1, 1-55, (2015)
[756] Eagle, N.; Pentland, A. S.; Lazer, D., Inferring friendship network structure by using mobile phone data, Proc. Natl. Acad. Sci., 106, 36, 15274-15278, (2009)
[757] Calabrese, F.; Smoreda, Z.; Blondel, V. D.; Ratti, C., Interplay between telecommunications and face-to-face interactions: A study using mobile phone data, PLoS One, 6, 7, (2011), e20814
[758] Karsai, M.; Kaski, K.; Barabási, A.-L.; Kertész, J., Universal features of correlated bursty behaviour, Sci. Rep., 2, 397, (2012)
[759] Krings, G.; Karsai, M.; Bernhardsson, S.; Blondel, V. D.; Saramäki, J., Effects of time window size and placement on the structure of an aggregated communication network, EPJ Data Sci., 1, 4, 1-16, (2012)
[760] Toole, J. L.; de Montjoye, Y.-A.; González, M. C.; Pentland, A. S., Modeling and understanding intrinsic characteristics of human mobility, (Social Phenomena, (2015), Springer International Publishing), 15-35
[761] Wesolowski, A.; Eagle, N.; Tatem, A. J.; Smith, D. L.; Noor, A. M.; Snow, R. W.; Buckee, C. O., Quantifying the impact of human mobility on malaria, Science, 338, 6104, 267-270, (2012)
[762] Pindolia, D. K.; Garcia, A. J.; Wesolowski, A.; Smith, D. L.; Buckee, C. O.; Noor, A. M.; Snow, R. W.; Tatem, A. J., Human movement data for malaria control and elimination strategic planning, Malar. J., 11, 1, 205, (2012)
[763] A. Wesolowski, C.O. Buckee, L. Bengtsson, E. Wetter, X. Lu, A.J. Tatem, Commentary: containing the Ebola outbreak-the potential and challenge of mobile network data, PLoS Curr. 6.
[764] Tizzoni, M.; Bajardi, P.; Decuyper, A.; King, G. K.K.; Schneider, C. M.; Blondel, V.; Smoreda, Z.; González, M. C.; Colizza, V., On the use of human mobility proxies for modeling epidemics, PLoS Comput. Biol., 10, 7, (2014), e1003716
[765] Health map, http://healthmap.org/.
[766] Freifeld, C. C.; Mandl, K. D.; Reis, B. Y.; Brownstein, J. S., Healthmap: global infectious disease monitoring through automated classification and visualization of Internet media reports, J. Amer. Med. Inform. Assoc., 15, 2, 150-157, (2008)
[767] Brownstein, J.; Freifeld, C., Healthmap: the development of automated real-time Internet surveillance for epidemic intelligence, Euro Surveill., 12, 11, (2007), E071129
[768] Health map projects, http://healthmap.org/site/projects.
[769] Health map publications, http://www.healthmap.org/site/about/publications.
[770] Health map flu trends, http://www.healthmap.org/flutrends/.
[771] Santillana, M.; Nguyen, A. T.; Dredze, M.; Paul, M. J.; Nsoesie, E. O.; Brownstein, J. S., Combining search, social media, and traditional data sources to improve influenza surveillance, PLoS Comput. Biol., 11, 10, (2015), e1004513
[772] Dengue map, http://www.healthmap.org/dengue/en/.
[773] Health map vaccine, http://flushot.healthmap.org/.
[774] Crowdbreaks, http://www.crowdbreaks.com/.
[775] Colizza, V.; Barrat, A.; Barthélemy, M.; Vespignani, A., The role of the airline transportation network in the prediction and predictability of global epidemics, Proc. Natl. Acad. Sci. USA, 103, 7, 2015-2020, (2006) · Zbl 1296.92225
[776] Durrett, R., (Epidemic Models: their Structure and Relation to Data, vol. 5, (1995), Cambridge University Press)
[777] Kreuzer, H. J., (Nonequilibrium Thermodynamics and its Statistical Foundations, vol. 1, (1981), Clarendon Press Oxford, New York), 455
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.