×

zbMATH — the first resource for mathematics

Counteracting dynamical degradation of digital chaotic Chebyshev map via perturbation. (English) Zbl 1360.37090

MSC:
37D45 Strange attractors, chaotic dynamics of systems with hyperbolic behavior
37E05 Dynamical systems involving maps of the interval (piecewise continuous, continuous, smooth)
37H99 Random dynamical systems
94A17 Measures of information, entropy
65C10 Random number generation in numerical analysis
94A60 Cryptography
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Addabbo, T., Member, S., Alioto, M., Fort, A., Pasini, A., Rocchi, S. & Vignoli, V. [2007] “A class of maximum-period nonlinear congruential generators derived from the Rényi chaotic map,” IEEE Trans. Circuits Syst.-I: Reg. Papers 54, 816-828. · Zbl 1374.94886
[2] Arroyo, D.; Li, C.; Li, S.; Alvarez, G.; Halang, W. A., Cryptanalysis of an image encryption scheme based on a new total shuffling algorithm, Chaos Solit. Fract., 41, 2613-2616, (2009) · Zbl 1198.94019
[3] Arroyo, N.; Alvarez, G.; Li, S.; Li, C.; Fernandez, V., Cryptanalysis of a new chaotic cryptosystem based on ergodicity, Int. J. Mod. Phys. B, 23, 651-659, (2009) · Zbl 1170.94323
[4] Bateni, G. H.; McGillem, C. D., A chaotic direct-sequence spread-spectrum communication system, IEEE Trans. Commun., 42, 1524-1527, (1994)
[5] Bernstein, G. M.; Lieberman, M. A., Secure random number generation using chaotic circuits, IEEE Trans. Circuits Syst., 37, 1157-1164, (1990)
[6] Cao, L.; Luo, Y.; Qiu, S.; Liu, J., A perturbation method to the tent map based on Lyapunov exponent and its application, Chinese Phys. B, 24, 1-8, (2015)
[7] Cerntik, J.; Černák, J., Digital generators of chaos, Phys. Lett. A, 214, 151-160, (1996) · Zbl 0972.37508
[8] Deng, Y.; Hu, H.; Xiong, W.; Neal, N.; Liu, L., Analysis and design of digital chaotic systems with desirable performance via feedback control, IEEE Trans. Syst. Man Cybern. Syst., 45, 1187-1200, (2015)
[9] Du, R.; Li, Y., Application of compound chaotic mapping in voice encryption algorithm, Int. J. Comput. Sci. Netw. Secur., 14, 44-46, (2014)
[10] ’Ecuyer, P.; Simard, R., Testu01: A C library for empirical testing of random number generators, ACM Trans. Math. Softw., 33, 1-40, (2007) · Zbl 1365.65008
[11] Hu, H.; Zhu, Z., A method of improving the properties of digital chaotic system, Chaos Solit. Fract., 38, 439-446, (2008) · Zbl 1146.37322
[12] Hu, H.; Deng, Y.; Liu, L., Counteracting the dynamical degradation of digital chaos via hybrid control, Commun. Nonlin. Sci. Numer. Simul., 19, 1970-1984, (2014)
[13] Hua, Z.; Zhou, Y., Dynamic parameter-control chaotic system, IEEE Trans. Cybernet., 46, 3330-3341, (2016)
[14] Hua, Z.; Zhou, Y., Image encryption using 2D logistic-adjusted-sine map, Inform. Sci., 339, 237-253, (2016)
[15] Kanso, A.; Smaoui, N., Logistic chaotic maps for binary numbers generations, Chaos Solit. Fract., 40, 2557-2568, (2009)
[16] Kinsner, W.; Member, S., Characterizing chaos through Lyapunov metrics, IEEE Trans. Syst. Man Cybern., 36, 141-151, (2006)
[17] Li, S.; Mou, X.; Cai, Y.; Ji, Z.; Zhang, J., On the security of a chaotic encryption scheme: problems with computerized chaos in finite computing precision, Comput. Phys. Commun., 153, 52-58, (2003) · Zbl 1196.94057
[18] Li, C.; Chen, J.; Chang, T., A chaos-based pseudo random number generator using timing-based reseeding method, Proc. IEEE Int. Symp. Circuits Syst., 1, 2-5, (2006)
[19] Li, S., Li, C., Lo, K.-T. & Chen, G. [2008] “Cryptanalyzing an encryption scheme based on blind source separation,” IEEE Trans. Circuits Syst.-I: Reg. Papers55, 1055-1063.
[20] Li, C.; Li, S.; Chen, G.; Halang, W. A., Cryptanalysis of an image encryption scheme based on a compound chaotic sequence, Imag. Vis. Comput., 27, 1035-1039, (2009)
[21] Li, C.; Lo, K.-T., Optimal quantitative cryptanalysis of permutation-only multimedia ciphers against plaintext attacks, Sign. Process., 91, 949-954, (2011) · Zbl 1217.94100
[22] Li, C.; Liu, Y.; Xie, T.; Chen, M. Z. Q., Breaking a novel image encryption scheme based on improved hyperchaotic sequences, Nonlin. Dyn., 73, 2083-2089, (2013) · Zbl 1281.68103
[23] Li, X.; Li, C.; Lee, I.-K., Chaotic image encryption using pseudo-random masks and pixel mapping, Sign. Process., 125, 48-63, (2016)
[24] Lin, Z.; Yu, S.; Lü, J.; Cai, S.; Chen, G., Design and arm-embedded implementation of a chaotic map-based real-time secure video communication system, IEEE Trans. Circuits Syst. Vid. Technol., 25, 1203-1216, (2015)
[25] Liu, S.; Sun, J.; Xu, Z.; Liu, J., Digital chaotic sequence generator based on copuled chaotic systems, Chinese Phys. B, 18, 5219-5227, (2009)
[26] Liu, H.; Wang, X., Color image encryption based on one-time keys and robust chaotic maps, Comput. Math. Appl., 59, 3320-3327, (2010) · Zbl 1198.94109
[27] Liu, J.; Zhang, H.; Song, D.; Buza, M. K.; Yang, B.; Guo, C., A new property of logistic map with scalable precision, Int. Workshop Chaos-Fractals Theories and Applications (IWCFTA), 67-71, (2012)
[28] Liu, L.; Hu, H.; Deng, Y., An analogue-digital mixed method for solving the dynamical degradation of digital chaotic systems, IMA J. Math. Contr. Inform., 32, 1-13, (2014)
[29] Liu, L.; Miao, S., A universal method for improving the dynamical degradation of a digital chaotic system, Physica Scripta, 90, 85205, (2015)
[30] Liu, Y.; Fan, H.; Xie, E. Y., Deciphering an image cipher based on mixed, Int. J. Bifurcation and Chaos, 25, 1-9, (2015) · Zbl 1330.94042
[31] Ljupco, K. [2001] “Chaos-based cryptography: A brief overview,” IEEE Circ. Syst. Mag. 2001 1, 6-21.
[32] Luo, Y.; Yu, S.; Liu, J., Design and implementation of image chaotic communication via FPGA embedded Ethernet transmission, Int. Workshop on Chaos-Fractals Theories and Applications (IWCFTA), 148-152, (2009)
[33] Luo, Y.; Du, M.; Liu, J., A symmetrical image encryption scheme in wavelet and time domain, Commun. Nonlin. Sci. Numer. Simul., 20, 447-460, (2015)
[34] Papadimitriou, S.; Bezerianos, A.; Bountis, T., Secure communication with chaotic systems of difference equations, IEEE Trans. Comput., 46, 27-38, (1997)
[35] Perc, M., Visualizing the attraction of strange attractors, Eur. J. Phys., 26, 579-587, (2005)
[36] Pincus, S. M., Approximate entropy as a measure of system complexity, Proc. Natl. Acad. Sci. USA, 88, 2297-2301, (1991) · Zbl 0756.60103
[37] Qin, X.; Wang, X., A new pseudo-random number generator based on CML and chaotic iteration, Nonlin. Dyn., 70, 1589-1592, (2012)
[38] Rukhin, A.; Soto, J.; Nechvatal, J.; Smid, M.; Barker, E.; Leigh, S.; Levenson, M.; Vangel, M.; Banks, D.; Heckert, A.; Dray, J.; Vo, S., A statistical test suite for random and pseudorandom number generators for cryptographic applications, Nist Special Publication, 1-130, (2001)
[39] Sang, T.; Wang, R.; Yan, Y., Perturbance-based algorithm to expand cycle length of chaotic key stream, Electron. Lett., 34, 873, (1998)
[40] Tong, X., Design of an image encryption scheme based on a multiple chaotic map, Commun. Nonlin. Sci. Numer. Simul., 18, 1725-1733, (2013) · Zbl 1321.94093
[41] Wang, S.; Liu, W.; Lu, H.; Kuang, J.; Hu, G., Periodicity of chaotic trajectories in realizations of finite computer precisions and its implication in chaos communications, Mod. Phys. B, 18, 2617-2622, (2004)
[42] Wang, X.; Wang, L., A new perturbation method to the tent map and its application, Chinese Phys. B, 20, 1-8, (2011)
[43] Wang, X.; Qin, X.; Teng, L., A novel true random number generator based on mouse movement and a one-dimensional chaotic map, Math. Probl. Engin., 2012, 1-9, (2012) · Zbl 1264.65007
[44] Wang, Q.; Yu, S.; Guyeux, C.; Bahi, J. M.; Fang, X., Theoretical design and circuit implementation of integer domain chaotic systems, Int. J. Bifurcation and Chaos, 24, 1450128-1-10, (2014) · Zbl 1302.37025
[45] Wang, Q., Yu, S., Li, C., Lü, J., Fang, X., Guyeux, C. & Bahi, J. M. [2016] “Theoretical design and FPGA-based implementation of higher-dimensional digital chaotic systems,” IEEE Trans. Circuits Syst.-I: Reg. Papers63, 401-412.
[46] Wheeler, D. D.; Matthews, R. A. J., Supercomputer investigations of a chaotic encryption algorithm, Cryptologia, 15, 140-152, (1991)
[47] Wong, K.; Kwok, B. S.; Law, W., A fast image encryption scheme based on chaotic standard map, Phys. Lett. A, 372, 2645-2652, (2008) · Zbl 1220.94044
[48] Xiang, F.; Qiu, S., Analysis on stability of binary chaotic pseudorandom sequence, IEEE Commun. Lett., 12, 337-339, (2008)
[49] Zhang, Y.; Xiao, D., Cryptanalysis of S-box-only chaotic image ciphers against chosen plaintext attack, Nonlin. Dyn., 72, 751-756, (2013)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.