×

zbMATH — the first resource for mathematics

Hybrid and iteratively reweighted regularization by unbiased predictive risk and weighted GCV for projected systems. (English) Zbl 1360.65115

MSC:
65F22 Ill-posedness and regularization problems in numerical linear algebra
65F10 Iterative numerical methods for linear systems
65D18 Numerical aspects of computer graphics, image analysis, and computational geometry
PDF BibTeX XML Cite
Full Text: DOI arXiv
References:
[1] J. Chung, G. Easley, and D. P. O’Leary, Windowed spectral regularization of inverse problems, SIAM J. Sci. Comput., 33 (2011), pp. 3175–3200, . · Zbl 1269.65041
[2] J. Chung, J. G. Nagy, and D. P. O’Leary, A weighted GCV method for Lanczos hybrid regularization, Electron. Trans. Numer. Anal., 28 (2008), pp. 149–167, . · Zbl 1171.65029
[3] J. M. Chung, M. E. Kilmer, and D. P. O’Leary, A framework for regularization via operator approximation, SIAM J. Sci. Comput., 37 (2015), pp. B332–B359, .
[4] D. C.-L. Fong and M. Saunders, LSMR: An iterative algorithm for sparse least-squares problems, SIAM J. Sci. Comput., 33 (2011), pp. 2950–2971, . · Zbl 1232.65052
[5] G. H. Golub, M. Heath, and G. Wahba, Generalized cross-validation as a method for choosing a good ridge parameter, Technometrics, 21 (1979), pp. 215–223, . · Zbl 0461.62059
[6] G. H. Golub and C. F. van Loan, Matrix Computations, 3rd ed., Johns Hopkins Press, Baltimore, MD, 1996. · Zbl 0865.65009
[7] K. Hämäläinen, L. Harhanen, A. Kallonen, A. Kujanpää, E. Niemi, and S. Siltanen, Tomographic X-ray Data of a Walnut, preprint, , 2015.
[8] K. Hämäläinen, A. Kallonen, V. Kolehmainen, M. Lassas, K. Niinimäki, and S. Siltanen, Sparse tomography, SIAM J. Sci. Comput., 35 (2013), pp. B644–B665, .
[9] M. Hanke and P. C. Hansen, Regularization methods for large-scale problems, Surv. Math. Ind., 3 (1993), pp. 253–315, . · Zbl 0805.65058
[10] P. C. Hansen, REGULARIZATION TOOLS: A Matlab package for analysis and solution of discrete ill-posed problems, Numer. Algorithms, 6 (1994), pp. 189–194, .
[11] P. C. Hansen, Rank-Deficient and Discrete Ill-Posed Problems, Society for Industrial and Applied Mathematics, Philadelphia, PA, 1998, .
[12] P. C. Hansen and T. K. Jensen, Noise propagation in regularizing iterations for image deblurring, Electron. Trans. Numer. Anal., 31 (2008), pp. 204–220, . · Zbl 1171.65032
[13] P. C. Hansen, J. G. Nagy, and D. P. O’Leary, Deblurring Images: Matrices, Spectra, and Filtering, Society for Industrial and Applied Mathematics, Philadelphia, PA, 2006, . · Zbl 1112.68127
[14] I. Hnětynková, M. Plešinger, and Z. Strakoš, The regularizing effect of the Golub-Kahan iterative bidiagonalization and revealing the noise level in the data, BIT Numer. Math., 49 (2009), pp. 669–696, .
[15] Y. Huang and Z. Jia, Some Results on the Regularization of LSQR for Large-Scale Discrete Ill-Posed Problems, preprint, , 2015. · Zbl 1453.65080
[16] M. E. Kilmer and D. P. O’Leary, Choosing regularization parameters in iterative methods for ill-posed problems, SIAM J. Matrix Anal. Appl., 22 (2001), pp. 1204–1221, . · Zbl 0983.65056
[17] V. A. Morozov, On the solution of functional equations by the method of regularization, Sov. Math. Dokl., 7 (1966), pp. 414–417, . · Zbl 0187.12203
[18] J. G. Nagy, K. Palmer, and L. Perrone, Iterative methods for image deblurring: A Matlab object-oriented approach, Numer. Algorithms, 36 (2004), pp. 73–93, . · Zbl 1048.65039
[19] R. Neelamani, H. Choi, and R. Baraniuk, ForWaRD: Fourier-wavelet regularized deconvolution for ill-conditioned systems, IEEE Trans. Signal Process., 52 (2004), pp. 418–433, . · Zbl 1369.94238
[20] C. C. Paige and M. A. Saunders, Towards a generalized singular value decomposition, SIAM J. Numer. Anal., 18 (1981), pp. 398–405, . · Zbl 0471.65018
[21] C. C. Paige and M. A. Saunders, Algorithm 583: LSQR: Sparse linear equations and least squares problems, ACM Trans. Math. Software, 8 (1982), pp. 195–209, .
[22] C. C. Paige and M. A. Saunders, LSQR: An algorithm for sparse linear equations and sparse least squares, ACM Trans. Math. Software, 8 (1982), pp. 43–71, . · Zbl 0478.65016
[23] V. Paoletti, P. C. Hansen, M. F. Hansen, and M. Fedi, A computationally efficient tool for assessing the depth resolution in large-scale potential-field inversion, Geophysics, 79 (2014), pp. A33–A38, .
[24] O. Portniaguine and M. S. Zhdanov, Focusing geophysical inversion images, Geophysics, 64 (1999), pp. 874–887, .
[25] L. Reichel, F. Sgallari, and Q. Ye, Tikhonov regularization based on generalized Krylov subspace methods, Appl. Numer. Math., 62 (2012), pp. 1215–1228, . · Zbl 1246.65068
[26] R. A. Renaut, I. Hnětynková, and J. Mead, Regularization parameter estimation for large-scale Tikhonov regularization using a priori information, Comput. Stat. Data Anal., 54 (2010), pp. 3430–3445, . · Zbl 1284.62156
[27] S. Vatankhah, V. E. Ardestani, and R. A. Renaut, Automatic estimation of the regularization parameter in 2D focusing gravity inversion: Application of the method to the Safo manganese mine in the northwest of Iran, J. Geophy. Eng., 11 (2014), 045001, .
[28] S. Vatankhah, V. E. Ardestani, and R. A. Renaut, Application of the \(χ^2\) principle and unbiased predictive risk estimator for determining the regularization parameter in 3-D focusing gravity inversion, Geophys. J. Int., 200 (2015), pp. 265–277, .
[29] S. Vatankhah, R. A. Renaut, and V. E. Ardestani, Regularization parameter estimation for underdetermined problems by the \(χ^2\) principle with application to 2D focusing gravity inversion, Inverse Problems, 30 (2014), 085002, . · Zbl 1300.65019
[30] C. Vogel, Computational Methods for Inverse Problems, Society for Industrial and Applied Mathematics, Philadelphia, PA, 2002, . · Zbl 1008.65103
[31] Z. Wang, A. Bovik, H. Sheikh, and E. Simoncelli, Image quality assessment: From error visibility to structural similarity, IEEE Trans. Image Process., 13 (2004), pp. 600–612, .
[32] B. Wohlberg and P. Rodríguez, An iteratively reweighted norm algorithm for minimization of total variation functionals, IEEE Signal Process. Lett., 14 (2007), pp. 948–951, .
[33] M. S. Zhdanov, Geophysical Inverse Theory and Regularization Problems, Methods in Geochemistry and Geophysics 36, Elsevier, Amsterdam, 2002.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.