×

Well-posed and ill-posed behaviour of the \(\mu(I)\)-rheology for granular flow. (English) Zbl 1360.76338

Summary: In light of the successes of the Navier-Stokes equations in the study of fluid flows, similar continuum treatment of granular materials is a long-standing ambition. This is due to their wide-ranging applications in the pharmaceutical and engineering industries as well as to geophysical phenomena such as avalanches and landslides. Historically this has been attempted through modification of the dissipation terms in the momentum balance equations, effectively introducing pressure and strain-rate dependence into the viscosity. Originally, a popular model for this granular viscosity, the Coulomb rheology, proposed rate-independent plastic behaviour scaled by a constant friction coefficient \(\mu\). Unfortunately, the resultant equations are always ill-posed. Mathematically ill-posed problems suffer from unbounded growth of short-wavelength perturbations, which necessarily leads to grid-dependent numerical results that do not converge as the spatial resolution is enhanced. This is unrealistic as all physical systems are subject to noise and do not blow up catastrophically. It is therefore vital to seek well-posed equations to make realistic predictions. The recent \(\mu(I)\)-rheology is a major step forward, which allows granular flows in chutes and shear cells to be predicted. This is achieved by introducing a dependence on the non-dimensional inertial number \(I\) in the friction coefficient \(\mu\). In this paper it is shown that the \(\mu(I)\)-rheology is well-posed for intermediate values of \(I\), but that it is ill-posed for both high and low inertial numbers. This result is not obvious from casual inspection of the equations, and suggests that additional physics, such as enduring force chains and binary collisions, becomes important in these limits. The theoretical results are validated numerically using two implicit schemes for non-Newtonian flows. In particular, it is shown explicitly that at a given resolution a standard numerical scheme used to compute steady-uniform Bagnold flow is stable in the well-posed region of parameter space, but is unstable to small perturbations, which grow exponentially quickly, in the ill-posed domain.

MSC:

76T25 Granular flows
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Fowler, Mathematical Models in the Applied Sciences (1997) · Zbl 0997.00535
[2] Toiya, Phys. Rev. E 93 (2004)
[3] DOI: 10.1103/PhysRevLett.107.188301 · doi:10.1103/PhysRevLett.107.188301
[4] DOI: 10.1017/S0022112003004555 · Zbl 1156.76458 · doi:10.1017/S0022112003004555
[5] DOI: 10.1016/S0376-0421(02)00030-1 · doi:10.1016/S0376-0421(02)00030-1
[6] DOI: 10.1103/PhysRevLett.111.238301 · doi:10.1103/PhysRevLett.111.238301
[7] DOI: 10.1017/S0022112006001509 · Zbl 1100.76067 · doi:10.1017/S0022112006001509
[8] DOI: 10.1002/1096-9853(200101)25:1&lt;1::AID-NAG115&gt;3.0.CO;2-8 · Zbl 0996.74024 · doi:10.1002/1096-9853(200101)25:1<1::AID-NAG115>3.0.CO;2-8
[9] DOI: 10.1017/jfm.2011.35 · Zbl 1241.76145 · doi:10.1017/jfm.2011.35
[10] DOI: 10.1017/S002211200200109X · Zbl 1020.76051 · doi:10.1017/S002211200200109X
[11] DOI: 10.1140/epje/i2003-10153-0 · doi:10.1140/epje/i2003-10153-0
[12] DOI: 10.1007/978-3-642-56026-2 · Zbl 0998.76001 · doi:10.1007/978-3-642-56026-2
[13] DOI: 10.1017/jfm.2011.251 · Zbl 1241.76416 · doi:10.1017/jfm.2011.251
[14] DOI: 10.1103/PhysRevLett.103.036001 · doi:10.1103/PhysRevLett.103.036001
[15] DOI: 10.1016/j.jnnfm.2010.08.010 · Zbl 1274.76106 · doi:10.1016/j.jnnfm.2010.08.010
[16] DOI: 10.1063/1.4757390 · Zbl 06429765 · doi:10.1063/1.4757390
[17] DOI: 10.1017/CBO9781139541008 · Zbl 1388.76001 · doi:10.1017/CBO9781139541008
[18] DOI: 10.1016/S0020-7683(98)00086-9 · Zbl 0930.74013 · doi:10.1016/S0020-7683(98)00086-9
[19] DOI: 10.1007/978-1-4613-0185-1 · Zbl 0966.76003 · doi:10.1007/978-1-4613-0185-1
[20] DOI: 10.1122/1.551067 · doi:10.1122/1.551067
[21] DOI: 10.1017/jfm.2014.643 · doi:10.1017/jfm.2014.643
[22] DOI: 10.1002/cpa.3160410703 · Zbl 0644.73037 · doi:10.1002/cpa.3160410703
[23] DOI: 10.1103/PhysRevE.72.021309 · doi:10.1103/PhysRevE.72.021309
[24] DOI: 10.1016/0022-0396(87)90038-6 · Zbl 0647.35037 · doi:10.1016/0022-0396(87)90038-6
[25] DOI: 10.1017/jfm.2011.315 · Zbl 1241.76014 · doi:10.1017/jfm.2011.315
[26] DOI: 10.1017/S0022112084001166 · doi:10.1017/S0022112084001166
[27] DOI: 10.1063/1.4904520 · Zbl 1323.76118 · doi:10.1063/1.4904520
[28] DOI: 10.1098/rsta.2009.0171 · Zbl 1192.76062 · doi:10.1098/rsta.2009.0171
[29] DOI: 10.1017/S0022112001006796 · Zbl 0987.76522 · doi:10.1017/S0022112001006796
[30] DOI: 10.1088/1742-5468/2006/07/P07020 · doi:10.1088/1742-5468/2006/07/P07020
[31] DOI: 10.1002/cpa.3160400403 · Zbl 0676.76046 · doi:10.1002/cpa.3160400403
[32] Leray, Hyperbolic Differential Equations (1953)
[33] DOI: 10.1017/jfm.2011.335 · Zbl 1241.76413 · doi:10.1017/jfm.2011.335
[34] Kamrin, Phys. Rev. Lett. 108 (2012)
[35] DOI: 10.1016/j.ijplas.2009.06.007 · Zbl 1415.74013 · doi:10.1016/j.ijplas.2009.06.007
[36] DOI: 10.1007/BF00418002 · Zbl 0707.76038 · doi:10.1007/BF00418002
[37] DOI: 10.1038/nature04801 · doi:10.1038/nature04801
[38] DOI: 10.1017/jfm.2011.272 · Zbl 1241.76008 · doi:10.1017/jfm.2011.272
[39] DOI: 10.1017/S0022112005005987 · Zbl 1082.76106 · doi:10.1017/S0022112005005987
[40] Jiang, Phys. Rev. Lett. 91 (2003)
[41] DOI: 10.1017/S0022112083001044 · Zbl 0523.76001 · doi:10.1017/S0022112083001044
[42] DOI: 10.1063/1.2364168 · doi:10.1063/1.2364168
[43] DOI: 10.1103/PhysRevLett.82.5241 · doi:10.1103/PhysRevLett.82.5241
[44] DOI: 10.1016/0167-6636(96)00006-3 · doi:10.1016/0167-6636(96)00006-3
[45] DOI: 10.1073/pnas.1219153110 · Zbl 1292.76070 · doi:10.1073/pnas.1219153110
[46] DOI: 10.1017/jfm.2012.348 · Zbl 1275.76105 · doi:10.1017/jfm.2012.348
[47] DOI: 10.1017/jfm.2014.450 · Zbl 1330.76137 · doi:10.1017/jfm.2014.450
[48] DOI: 10.1063/1.168744 · doi:10.1063/1.168744
[49] DOI: 10.1175/1520-0485(1999)029&lt;2920:LOHAIP&gt;2.0.CO;2 · doi:10.1175/1520-0485(1999)029<2920:LOHAIP>2.0.CO;2
[50] DOI: 10.1002/nag.1610020203 · doi:10.1002/nag.1610020203
[51] DOI: 10.1146/annurev.fluid.35.101101.161114 · Zbl 1125.76406 · doi:10.1146/annurev.fluid.35.101101.161114
[52] DOI: 10.1007/BF01299795 · Zbl 0735.73026 · doi:10.1007/BF01299795
[53] DOI: 10.1146/annurev-fluid-122109-160705 · Zbl 1299.76074 · doi:10.1146/annurev-fluid-122109-160705
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.