×

Reorientation of linear switched systems using state feedback. (English) Zbl 1360.93338

Summary: A characterization is obtained for the controlled and conditioned invariants of a linear switched system under feedback. The existence of a maximal consistent subspace with feedback is shown and is computed. A few sufficient conditions under which the feedback has no effect on the controlled and conditioned invariants are obtained. Sufficient conditions for achieving the minimal jump subspace with feedback when it exists, are also derived. The impossibility of forcing the jump subspace to a trivial subspace with state feedback is shown. Some sufficient conditions on the feedback for the consistent and jump subspaces to intersect trivially have also been stated.

MSC:

93C30 Control/observation systems governed by functional relations other than differential equations (such as hybrid and switching systems)
93C05 Linear systems in control theory
03B52 Fuzzy logic; logic of vagueness
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Basile, G.; Marro, G., Controlled and conditioned invariant subspaces in linear system theory, Journal of Optimization Theory and Applications, 3, 5, 306-315 (1969) · Zbl 0172.12501
[2] Basile, G.; Marro, G., On the observability of linear, time-invariant systems with unknown inputs, Journal of Optimization Theory and Applications, 3, 6, 410-415 (1969) · Zbl 0165.10203
[3] Basile, G.; Marro, G., A new characterization of some structural properties of linear systems: unknown-input observability, invertibility and functional controllability, International Journal of Control, 17, 5, 931-943 (1973) · Zbl 0255.93009
[4] Basile, G.; Marro, G., Self-bounded controlled invariant subspaces: a straightforward approach to constrained controllability, Journal of Optimization Theory and Applications, 38, 1, 71-81 (1982) · Zbl 0471.93008
[5] Basile, G.; Marro, G., Self-bounded controlled invariants versus stabilizability, Journal of Optimization Theory and Applications, 48, 2, 245-263 (1986) · Zbl 0559.93056
[6] Basile, G.; Marro, G., Controlled and conditioned invariants in linear system theory (1992), Prentice-Hall, Englewood Cliffs: Prentice-Hall, Englewood Cliffs NJ · Zbl 0758.93002
[7] Bhattacharyya, S., On calculating maximal \((a, b)\) invariant subspaces, IEEE Transactions on Automatic Control, 20, 2, 264-265 (1975) · Zbl 0298.93008
[8] Bhattacharyya, S., Observer design for linear systems with unknown inputs, IEEE Transactions on Automatic Control, 23, 3, 483-484 (1978) · Zbl 0377.93025
[9] Blanchini, F.; Miani, S., Set-theoretic methods in control (2008), Springer · Zbl 1140.93001
[10] Camlibel, M. K.; Heemels, W. P.M. H.; van der Schaft, A. J.; Schumacher, J. M., Switched networks and complementarity, IEEE Transactions on Circuits and Systems, 50, 8, 1036-1046 (2003) · Zbl 1368.93368
[11] Camlibel, M.; Pang, J.; Shen, J., Conewise linear systems: non-zenoness and observability, SIAM Journal on Control and Optimization, 45, 5, 1769-1800 (2007) · Zbl 1126.93030
[12] Cottle, R. W.; Pang, J.-S.; Stone, R. E., The Linear complementarity problem (1992), Academic Press, INC. Harcourt Brace Jovanovich, Publishers: Academic Press, INC. Harcourt Brace Jovanovich, Publishers San Diego, USA · Zbl 0757.90078
[13] Dervisoglu, A., State equations and initial values in active rlc networks, IEEE Transactions on Circuit Theory, 18, 5, 544-547 (1971)
[14] Fabian, E.; Wonham, W., Decoupling and disturbance rejection, IEEE Transactions on Automatic Control, 20, 3, 399-401 (1975) · Zbl 0301.93028
[15] Frasca, R.; Camlibel, M.; Goknar, I.; Iannelli, L.; Vasca, F., Linear passive networks with ideal switches: consistent initial conditions and state discontinuities, IEEE Transactions on Circuits and Systems I: Regular Papers, 57, 12, 3138-3151 (2010) · Zbl 1468.93090
[16] Hautus, M. L.J., The formal laplace transform for smooth linear systems, (Marchesini, G.; Mitter, S. K., Mathematical systems theory. Mathematical systems theory, Lect. notes econ. math. syst., 131 (1976), Springer), 29-47 · Zbl 0345.93022
[17] Hautus, M. L.J.; Silverman, L. M., Singular structure and singular control, Linear Algebra and its Applications, 50, 369-402 (1983) · Zbl 0522.93021
[18] Heemels, W. P.M. H.; Camlibel, M. K.; van der Schaft, A. J.; Schumacher, J. M., Modelling, well-posedness, and stability of switched electrical networks, (Maler, O.; Pnueli, A., Hybrid systems: computations and control. Hybrid systems: computations and control, Lecture notes in computer science, 2623/2008 (2003), Springer-Verlag), 249-266 · Zbl 1032.93501
[19] Heemels, W. P.M. H.; Schumacher, J. M.; Weiland, S., Complete description of dynamics in the linear complementarity-slackness class of hybrid systems, IEEE Conference on Decision & Control, 36:1243-36:1248 (1997)
[20] Heemels, W. P.M. H.; Schumacher, J. M.; Weiland, S., Linear complementarity systems, SIAM Journal on Applied Mathematics, 60, 4, 1234-1269 (2000) · Zbl 0954.34007
[21] Heemels, W. P.M. H.; Schumacher, J. M.; Weiland, S., Well-posedness of linear complementarity systems, IEEE Conference on Decision & Control, 38:3037-38:3042 (1999)
[22] Kolmanovsky, I.; Gilbert, E., Theory and computation of disturbance invariant sets for discrete-time linear systems, Mathematical Problems in Engineering, 4, 4, 317-367 (1998) · Zbl 0923.93005
[23] Leenaerts, D. M.W.; van Bokhoven, W. M.G., Piecewise linear modeling and analysis (1998), Kluwer: Kluwer Dordrecht, the Netherlands
[24] Lootsma, Y. J.; van der Schaft, A. J.; Camlibel, M. K., Uniqueness of solutions of linear relay systems, Automatica, 35, 3, 467-478 (1999) · Zbl 0947.93021
[25] Molinari, B., Extended controllability and observability for linear systems, IEEE Transactions on Automatic Control, 21, 1, 136-137 (1976) · Zbl 0317.93010
[26] Molinari, B., A strong controllability and observability in linear multivariable control, IEEE Transactions on Automatic Control, 21, 5, 761-764 (1976) · Zbl 0334.93009
[27] Molinari, B., Zeros of the system matrix, IEEE Transactions on Automatic Control, 21, 5, 795-797 (1976) · Zbl 0333.93012
[28] Opal, A.; Vlach, J., Consistent initial conditions of linear switched networks, IEEE Transactions on Circuits and Systems, 37, 3, 364-372 (1990)
[29] Pappas, G., Bisimilar linear systems, Automatica, 39, 12, 2035-2047 (2003) · Zbl 1045.93033
[31] Rugh, W. J., Linear systems theory (1996), Prentice-Hall, Upper Saddle River: Prentice-Hall, Upper Saddle River NJ · Zbl 0892.93002
[32] Seshu, S.; Balabanian, N., Linear network analysis (1964), Wiley
[33] Shen, J.; Pang, J. S., Linear complementarity systems: zeno states, SIAM Journal on Control and Optimization, 44, 6, 1040-1066 (2005) · Zbl 1092.90052
[34] Trentelman, H. L.; Stoorvogel, A. A.; Hautus, M. L.J., Control theory for linear systems (2001), Springer-Verlag: Springer-Verlag London · Zbl 0963.93004
[35] van der Schaft, A. J.; Schumacher, J. M., The complementary-slackness class of hybrid Systems, Mathematics of Control, Signals and Systems, 9, 266-301 (1996) · Zbl 0862.93034
[36] van der Schaft, A. J.; Schumacher, J. M., Complementarity modeling of hybrid systems, IEEE Transactions on Automatic Control, 43, 483-490 (1998) · Zbl 0899.93002
[37] van der Schaft, A. J.; Schumacher, J. M., An introduction to hybrid dynamical systems, (Lecture notes in control and information sciences, 251 (2000), Springer) · Zbl 0940.93004
[38] van der Schaft, A., Equivalence of hybrid dynamical systems, (International symposium on mathematical theory of networks and systems, 16 (2004), Leuven: Leuven Belgium) · Zbl 1365.93212
[39] van der Schaft, A., Equivalence of dynamical systems by bisimulation, IEEE Transactions on Automatic Control, 49, 12, 2160-2172 (2004) · Zbl 1365.93212
[40] van der Schaft, A., Bisimulation of dynamical systems, Hybrid Systems: Computation and Control, 291-294 (2004) · Zbl 1135.93323
[41] Wonham, W. M., Linear systems theory: a geometric approach (1978), Springer-Verlag: Springer-Verlag New York, USA
[42] Wonham, W.; Morse, A., Decoupling and pole assignment in linear multivariable systems: a geometric approach, SIAM Journal on Control, 8, 1, 1-18 (1970) · Zbl 0206.16404
[43] Zuhao, Z., ZZ model method for initial condition analysis of dynamics networks, IEEE Transactions on Circuits and Systems, 38, 8, 937-941 (1991)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.