×

zbMATH — the first resource for mathematics

Estimates for the real and imaginary parts of the eigenvalues of matrices and applications. (English) Zbl 1361.15021
The authors provide new bounds for the inequalities studied previously by them [Electron. J. Linear Algebra 27, 892–906 (2014; Zbl 1326.15015)]. They establish more estimates for the real and imaginary parts of the spectra involving the spreads of matrices. Some applications to the location of the zeros of polynomials are provided.

MSC:
15A42 Inequalities involving eigenvalues and eigenvectors
26C10 Real polynomials: location of zeros
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] DOI: 10.1112/S0025579300001790 · Zbl 0073.00903 · doi:10.1112/S0025579300001790
[2] DOI: 10.1016/0898-1221(93)90147-N · Zbl 0773.15008 · doi:10.1016/0898-1221(93)90147-N
[3] DOI: 10.1016/j.laa.2007.06.008 · Zbl 1140.15019 · doi:10.1016/j.laa.2007.06.008
[4] Gumus IH, Electron. J. Linear Algebra 27 pp 892– (2014)
[5] DOI: 10.1016/0024-3795(80)90258-X · Zbl 0435.15015 · doi:10.1016/0024-3795(80)90258-X
[6] DOI: 10.1155/JIA/2006/43465 · Zbl 1133.26321 · doi:10.1155/JIA/2006/43465
[7] Sharma R, J. Inequal. Special Funct 2 pp 8– (2011)
[8] DOI: 10.1016/0024-3795(90)90120-2 · Zbl 0701.15012 · doi:10.1016/0024-3795(90)90120-2
[9] DOI: 10.1016/0024-3795(91)90328-T · Zbl 0723.15014 · doi:10.1016/0024-3795(91)90328-T
[10] DOI: 10.1016/j.laa.2009.10.013 · Zbl 1197.15010 · doi:10.1016/j.laa.2009.10.013
[11] DOI: 10.1016/0024-3795(94)90473-1 · Zbl 0813.15016 · doi:10.1016/0024-3795(94)90473-1
[12] DOI: 10.1017/CBO9780511810817 · Zbl 0576.15001 · doi:10.1017/CBO9780511810817
[13] DOI: 10.15352/afa/1391614569 · Zbl 1298.47011 · doi:10.15352/afa/1391614569
[14] DOI: 10.3792/pja/1195519149 · Zbl 0331.15020 · doi:10.3792/pja/1195519149
[15] DOI: 10.1007/s00013-003-0525-6 · Zbl 1037.30006 · doi:10.1007/s00013-003-0525-6
[16] DOI: 10.1007/978-94-011-4577-0_13 · doi:10.1007/978-94-011-4577-0_13
[17] DOI: 10.1090/S0002-9939-06-08509-1 · Zbl 1113.15015 · doi:10.1090/S0002-9939-06-08509-1
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.