zbMATH — the first resource for mathematics

Persistent topological features of dynamical systems. (English) Zbl 1361.37068
Summary: Inspired by an early work of M. R. Muldoon et al. [Physica D 65, No. 1–2, 1–16 (1993; Zbl 0778.58045)], we present a general method for constructing simplicial complex from observed time series of dynamical systems based on the delay coordinate reconstruction procedure. The obtained simplicial complex preserves all pertinent topological features of the reconstructed phase space, and it may be analyzed from topological, combinatorial, and algebraic aspects. In focus of this study is the computation of homology of the invariant set of some well known dynamical systems that display chaotic behavior. Persistent homology of simplicial complex and its relationship with the embedding dimensions are examined by studying the lifetime of topological features and topological noise. The consistency of topological properties for different dynamic regimes and embedding dimensions is examined. The obtained results shed new light on the topological properties of the reconstructed phase space and open up new possibilities for application of advanced topological methods. The method presented here may be used as a generic method for constructing simplicial complex from a scalar time series that has a number of advantages compared to the mapping of the same time series to a complex network.
©2016 American Institute of Physics

37M10 Time series analysis of dynamical systems
Full Text: DOI
[1] Carlsson, G., Topology and Data, Bull. Am. Math. Soc, 46, 2, 255-308, (2009) · Zbl 1172.62002
[2] Muldoon, M. R.; MacKay, R. S.; Huke, J. P.; Broomhead, D. S., Topology from time series, Physica D, 65, 1-16, (1993) · Zbl 0778.58045
[3] Packard, N.; Crutchfield, J.; Farmer, D.; Shaw, R., Geometry from a time series, Phys. Rev. Lett., 45, 712, (1980)
[4] Maletić, S.; Rajković, M., Combinatorial Laplacian and entropy of simplicial complexes associated with complex networks, Eur. Phys. J. Spec. Top., 212, 77-97, (2012)
[5] Takens, F., Detecting strange attractors in turbulence, Lecture Notes in Mathematics, (1981), Springer-Verlag · Zbl 0513.58032
[6] Sauer, T.; Yorke, J.; Casdagli, M., Embedology, J. Stat. Phys., 65, 3-4, 95-116, (1991) · Zbl 0943.37506
[7] Pecora, L. M.; Moniz, L.; Nichols, J.; Carroll, T. L., A unified approach to attractor reconstruction, Chaos, 17, 013110, (2007) · Zbl 1159.37378
[8] Fraser, A. M.; Swinney, H. L., Independent coordinates for strange attractors from mutual information, Phys. Rev. A, 33, 1134, (1986) · Zbl 1184.37027
[9] Kennel, M. B.; Brown, R.; Abarbanel, H. D. I., Determining embedding dimension for phase space reconstruction using a geometrical construction, Phys. Rev. A, 45, 3403, (1992)
[10] Newman, M. E. J., The structure and function of complex networks, SIAM Rev., 45, 167, (2003) · Zbl 1029.68010
[11] Donner, R. V.; Small, M.; Donges, J. F.; Marwan, N.; Zou, Y.; Xiang, R.; Kurths, J., Recurrence-based time series analysis by means of complex network methods, Int. J. Bifurcation Chaos, 21, 4, 1019, (2011) · Zbl 1247.37086
[12] Marwan, N.; Donges, J. F.; Zou, Y.; Donner, R. V.; Kurths, J., Complex network approach for recurrence analysis of time series, Phys. Lett. A, 373, 46, 4246, (2009) · Zbl 1234.05214
[13] Zhang, J.; Small, M., Complex network from pseudoperiodic time series: Topology versus dynamics, Phys. Rev. Lett., 96, 23, 238701, (2006)
[14] Lacasa, L.; Luque, B.; Ballesteros, F.; Luque, J.; Nuno, J. C., From time series to complex networks: The visibility graph, Proc. Natl. Acad. Sci. U.S.A., 105, 13, 4972, (2008) · Zbl 1205.05162
[15] Shirazi, A. H.; Jafari, G. R.; Davoudi, J.; Peinke, J.; Rahimi Tabar, M. R.; Sahim, M., Mapping stochastic processes onto complex networks, J. Stat. Mech., Theor. Exp., 2009, P07046
[16] Sun, X.; Small, M.; Zhao, Y.; Xue, X., Characterizing system dynamics with a weighted and directed network constructed from time series data, Chaos, 24, 024402, (2014) · Zbl 1345.37093
[17] Weng, T.; Zhao, Y.; Small, M.; Huang, D., Time-series analysis of networks: Exploring the structure with random walks, Phys. Rev. E, 90, 022804, (2014)
[18] Zhao, Y.; Weng, T.; Ye, S., Geometrical invariability of transformation between a time series and a complex network, Phys. Rev. E, 90, 012804, (2014)
[19] Atkin, R. H., Combinatorial Connectivities in Social Systems, (1977), Birkhäuser Verlag, Base und Stuttgart · Zbl 0362.92015
[20] Atkin, R. H.; Bastin, T., A homological foundation for scale problems in physics, Int. J. Theor. Phys., 3, 449, (1970)
[21] Regge, T., General relativity without coordinates, Nuovo Cimento, 19, 558, (1961)
[22] Bossavit, A., Computational Electromagnetism: Variational Formulations, Complementarity, Edge Elements, (1998), Academic Press · Zbl 0945.78001
[23] Edelsbrunner, H.; Harer, J. L., Computational topology: An Introduction, (2010), American Mathematical Society: American Mathematical Society, Providence, RI · Zbl 1193.55001
[24] Maletić, S.; Rajković, M., Consensus formation on simplicial complex of opinions, Physica A, 397, 111-120, (2014) · Zbl 1402.91604
[25] Maletić, S.; Horak, D.; Rajković, M., Cooperation, conflict and higher-order structures of social networks, Adv. Complex Syst., 15, 1, 1250055, (2012)
[26] Andjelković, M.; Tadić, B.; Maletić, S.; Rajković, M., Hierarchical sequencing of online social graphs, Physica A, 436, 582-595, (2015) · Zbl 1400.91447
[27] Edelsbrunner, H.; Harer, J., Persistent homology—A survey, Surveys on Discrete and Computational Geometry, 257-282, (2008), American Mathematical Society: American Mathematical Society, Providence, RI · Zbl 1145.55007
[28] Maletić, S.; Rajković, M.; Vasiljević, D.; Bubak, M.; van Albada, G.; Dongarra, J.; Sloot, P. M. A., Simplicial complexes of networks and their statistical properties, Computational Science ICCS 2008, 568-575, (2008), Springer: Springer, Berlin
[29] Horak, D.; Maletić, S.; Rajković, M., Persistent homology of complex networks, J. Stat. Mech.: Theor. Exp., 2009, P03034
[30] Garland, J.; Bradley, E.; Meiss, J. D., Exploring the topology of dynamical reconstructions, Phys. D · Zbl 1415.37103
[31] Pereira, C. M. M.; de Mello, R. F., Persistent homology for time series and spatial data clustering, Expert Syst. Appl., 42, 6026-6038, (2015)
[32] de Silva, V.; Carlsson, G., Topological estimation using witness complexes, 157-166, (2004)
[33] Grassberger, P.; Procaccia, I., Measuring the strangeness of strange attractors, Physica D, 9, 189-208, (1983) · Zbl 0593.58024
[34] Robinson, G.; Thiel, M., Recurrences determine the dynamics, Chaos, 19, 023104, (2009) · Zbl 1309.37021
[35] Munkres, J. R., Elements of Algebraic Topology, (1984), Addison-Wesley Publishing: Addison-Wesley Publishing, California · Zbl 0673.55001
[36] Ghrist, R., Barcodes: The persistent topology of data, Bull. Am. Math. Soc. (N.S.), 45, 1, 61-75, (2008) · Zbl 1391.55005
[37] Grassberger, P.; Procaccia, I., Characterization of strange attractors, Phys. Rev. Lett., 50, 346, (1983)
[38] de Silva, V.; Perry, P., PLEX home page
[39] Hénon, M., A two-dimensional mapping with a strange attractor, Commun. Math. Phys., 50, 1, 69-77, (1976) · Zbl 0576.58018
[40] Lorenz, E. N., Deterministic nonperiodic flow, J. Atmos. Sci., 20, 2, 130-141, (1963) · Zbl 1417.37129
[41] Rössler, O., An equation for continuous chaos, Phys. Lett. A, 57, 5, 397-398, (1976) · Zbl 1371.37062
[42] Kozlov, D., Combinatorial algebraic topology, Algorithms and Computation in Mathematics, (2008), Springer-Verlag: Springer-Verlag, Berlin · Zbl 1130.55001
[43] Bron, C.; Kerbosch, J., Finding all cliques of an undirected graph, Commun. ACM, 16, 575, (1973) · Zbl 0261.68018
[44] Carlsson, G.; Singh, G.; Zomorodian, A.; Dong, Y.; Du, D.-Z.; Ibarra, O., Computing multidimensional persistence, Algorithms and Computation, 5878, 730-739, (2009) · Zbl 1273.68416
[45] Alligood, K. T.; Sauer, T. D.; Yorke, J. A., Chaos: An Introduction to Dynamical Systems, (1996), Springer-Verlag: Springer-Verlag, New York · Zbl 0867.58043
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.