×

Ergodic decomposition of group actions on rooted trees. (English) Zbl 1362.37013

Proc. Steklov Inst. Math. 292, 94-111 (2016) and Tr. Mat. Inst. Steklova 292, 100-117 (2016).
Summary: We prove a general result about the decomposition into ergodic components of group actions on boundaries of spherically homogeneous rooted trees. Namely, we identify the space of ergodic components with the boundary of the orbit tree associated with the action, and show that the canonical system of ergodic invariant probability measures coincides with the system of uniform measures on the boundaries of minimal invariant subtrees of the tree. Special attention is paid to the case of groups generated by finite automata. Few examples, including the lamplighter group, Sushchansky group, and so-called universal group, are considered in order to demonstrate applications of the theorem.

MSC:

37A30 Ergodic theorems, spectral theory, Markov operators
20E08 Groups acting on trees
PDFBibTeX XMLCite
Full Text: DOI arXiv

References:

[1] M. G. Benli, R. Grigorchuk, and T. Nagnibeda, “Universal groups of intermediate growth and their invariant random subgroups,” Funkts. Anal. Prilozh. 49 (3), 1-21 (2015) [Funct. Anal. Appl. 49, 159-174 (2015)]. · Zbl 1365.20042 · doi:10.4213/faa3205
[2] I. Bondarenko, R. Grigorchuk, R. Kravchenko, Y. Muntyan, V. Nekrashevych, D. Savchuk, and Z. Šunić, “Classification of groups generated by 3-state automata over 2-letter alphabet,” Algebra Discrete Math., No. 1, 1-163 (2008); arXiv: 0803.3555 [math.GR]. · Zbl 1164.20004
[3] I. V. Bondarenko and D. M. Savchuk, “On Sushchansky p-groups,” Algebra Discrete Math., No. 2, 22-42 (2007); arXiv:math/0612200 [math.GR]. · Zbl 1164.20012
[4] J. Buescu, M. Kulczycki, and I. Stewart, “Liapunov stability and adding machines revisited,” Dyn. Syst. 21 (3), 379-384 (2006). · Zbl 1130.37328 · doi:10.1080/14689360600649815
[5] J. Buescu and I. Stewart, “Liapunov stability and adding machines,” Ergodic Theory Dyn. Syst. 15 (2), 271-290 (1995). · Zbl 0848.54027 · doi:10.1017/S0143385700008373
[6] A. I. Bufetov, “Ergodic decomposition for measures quasi-invariant under a Borel action of an inductively compact group,” Mat. Sb. 205 (2), 39-70 (2014) [Sb. Math. 205, 192-219 (2014)]. · Zbl 1302.37004 · doi:10.4213/sm8202
[7] D. B. A. Epstein, J. W. Cannon, D. F. Holt, S. V. F. Levy, M. S. Paterson, and W. P. Thurston, Word Processing in Groups (Jones and Bartlett Publ., Boston, MA, 1992). · Zbl 0764.20017
[8] R. H. Farrell, “Representation of invariant measures,” Ill. J. Math. 6, 447-467 (1962). · Zbl 0108.14203
[9] N. J. Fine, “Binomial coefficients modulo a prime,” Am. Math. Mon. 54, 589-592 (1947). · Zbl 0030.11102 · doi:10.2307/2304500
[10] S. V. Fomin, “On measures invariant under a group of transformations,” Izv. Akad. Nauk SSSR, Ser. Mat. 14 (3), 261-274 (1950) [Am. Math. Soc. Transl., Ser. 2, 51, 317-332 (1966)]. · Zbl 0037.07501
[11] P. W. Gawron, V. V. Nekrashevych, and V. I. Sushchansky, “Conjugation in tree automorphism groups,” Int. J. Algebra Comput. 11 (5), 529-547 (2001). · Zbl 1030.20015 · doi:10.1142/S021819670100070X
[12] R. I. Grigorchuk, “Burnside’s problem on periodic groups,” Funkts. Anal. Prilozh. 14 (1), 53-54 (1980) [Funct. Anal. Appl. 14, 41-43 (1980)]. · Zbl 0595.20029
[13] R. I. Grigorchuk, “Degrees of growth of finitely generated groups, and the theory of invariant means,” Izv. Akad. Nauk SSSR, Ser. Mat. 48 (5), 939-985 (1984) [Math. USSR, Izv. 25 (2), 259-300 (1985)]. · Zbl 0583.20023
[14] R. I. Grigorchuk, “Just infinite branch groups,” in New Horizons in Pro-p Groups (Birkhäuser, Boston, MA, 2000), Prog. Math. 184, pp. 121-179. · Zbl 0982.20024
[15] Grigorchuk, R., Solved and unsolved problems around one group, 117-218 (2005), Basel · Zbl 1165.20021 · doi:10.1007/3-7643-7447-0_5
[16] R. I. Grigorchuk, “Some topics in the dynamics of group actions on rooted trees,” Tr. Mat. Inst. im. V.A. Steklova, Ross. Akad. Nauk 273, 72-191 (2011) [Proc. Steklov Inst. Math. 273, 64-175 (2011)]. · Zbl 1268.20027
[17] R. Grigorchuk and P. de la Harpe, “Amenability and ergodic properties of topological groups: From Bogolyubov onwards,” arxiv: 1404.7030 [math.GR]. · Zbl 1397.43001
[18] R. I. Grigorchuk, V. V. Nekrashevich, and V. I. Sushchanskii, “Automata, dynamical systems, and groups,” Tr. Mat. Inst. im. V.A. Steklova, Ross. Akad. Nauk 231, 134-214 (2000) [Proc. Steklov Inst. Math. 231, 128-203 (2000)]. · Zbl 1155.37311
[19] Grigorchuk, R.; Šunić, Z., Schreier spectrum of the Hanoi Towers group on three pegs, 183-198 (2008), Providence, RI · Zbl 1170.37008 · doi:10.1090/pspum/077/2459869
[20] R. I. Grigorchuk and A. Zuk, “The lamplighter group as a group generated by a 2-state automaton, and its spectrum,” Geom. Dedicata 87 (1-3), 209-244 (2001). · Zbl 0990.60049 · doi:10.1023/A:1012061801279
[21] R. I. Grigorchuk and A. Zuk, “On a torsion-free weakly branch group defined by a three state automaton,” Int. J. Algebra Comput. 12 (1-2), 223-246 (2002). · Zbl 1070.20031 · doi:10.1142/S0218196702001000
[22] L. Kaloujnine, “La structure des p-groupes de Sylow des groupes symétriques finis,” Ann. Sci. éc. Norm. Super., Sér. 3, 65, 239-276 (1948). · Zbl 0034.30501
[23] A. S. Kechris and B. D. Miller, Topics in Orbit Equivalence (Springer, Berlin, 2004), Lect. Notes Math. 1852. · Zbl 1058.37003 · doi:10.1007/b99421
[24] Klimann, I., The finiteness of a group generated by a 2-letter invertible-reversible Mealy automaton is decidable, 502-513 (2013), Wadern · Zbl 1354.68159
[25] Klimann, I.; Picantin, M.; Savchuk, D., A connected 3-state reversible Mealy automaton cannot generate an infinite Burnside group, 313-325 (2015), Cham · Zbl 1386.68106 · doi:10.1007/978-3-319-21500-6_25
[26] I. Klimann, M. Picantin, and D. Savchuk, “Orbit automata as a new tool to attack the order problem in automaton groups,” J. Algebra 445, 433-457 (2016); arxiv: 1411.0158 [math.GR]. · Zbl 1383.20018 · doi:10.1016/j.jalgebra.2015.07.003
[27] A. Kolmogoroff, Grundbegriffe der Wahrscheinlichkeitsrechnung (Springer, Berlin, 1973). · Zbl 0278.60001
[28] G. W. Mackey, “Ergodic transformation groups with a pure point spectrum,” Ill. J. Math. 8, 593-600 (1964). · Zbl 0255.22014
[29] V. Nekrashevych, Self-similar Groups (Am. Math. Soc., Providence, RI, 2005), Math. Surv. Monogr. 117. · Zbl 1087.20032 · doi:10.1090/surv/117
[30] K. R. Parthasarathy, Probability Measures on Metric Spaces (AMS Chelsea Publ., Providence, RI, 2005). · Zbl 1188.60001
[31] V. A. Rokhlin, “Selected topics from the metric theory of dynamical systems,” Usp. Mat. Nauk 4 (2), 57-128 (1949) [Am. Math. Soc. Transl., Ser. 2, 49, 171-240 (1966)]. · Zbl 0185.21802
[32] D. M. Savchuk and S. N. Sidki, “Affine automorphisms of rooted trees,” Geom. Dedicata (in press); arXiv: 1510.08434 [math.GR]. · Zbl 1387.20021
[33] V. I. SuŠanski, “Periodic p-groups of permutations and the unrestricted Burnside problem,” Dokl. Akad. Nauk SSSR 247 (3), 557-561 (1979) [Sov. Math., Dokl. 20, 766-770 (1979)]. · Zbl 0428.20023
[34] V. S. Varadarajan, “Groups of automorphisms of Borel spaces,” Trans. Am. Math. Soc. 109, 191-220 (1963). · Zbl 0192.14203 · doi:10.1090/S0002-9947-1963-0159923-5
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.