×

Hierarchies of difference equations and Bäcklund transformations. (English) Zbl 1362.39006

Summary: In this paper we present a method for deriving infinite sequences of difference equations containing well known discrete Painlevé equations by using the Bäcklund transformations for the equations in the second Painlevé equation hierarchy.

MSC:

39A12 Discrete version of topics in analysis
34M55 Painlevé and other special ordinary differential equations in the complex domain; classification, hierarchies
PDF BibTeX XML Cite
Full Text: DOI

References:

[1] Adler V E, Funct. Anal. Appl. 27 pp 79– (1993) · Zbl 0812.58072
[2] Airault H, Stud. Appl. Math. 61 pp 31– (1979) · Zbl 0496.58012
[3] Bassom A P, Stud. Appl. Math. 95 pp 1– (1995) · Zbl 0846.34006
[4] Clarkson P A, Nonlinearity 16 pp R1– (2003) · Zbl 1040.33015
[5] Clarkson P A, Inverse Problems 15 pp 175– (1999) · Zbl 0923.35170
[6] Clarkson P A, Theo. Math. Phys. 122 pp 1– (2000)
[7] Cresswell C, J. Phys. A: Math. Gen. 32 pp 655– (1999) · Zbl 0978.39013
[8] Cresswell C, Lett. Math. Phys. 61 pp 1– (2002) · Zbl 1022.39018
[9] Filipuk G V, Trudy Instituta Matematiki NAN Belarusi 10 pp 157– (2001)
[10] Flaschka H, Commun. Math. Phys. 76 pp 65– (1980) · Zbl 0439.34005
[11] Fokas A S, J. Math. Phys. 23 pp 2033– (1982) · Zbl 0504.34022
[12] Fokas A S, J. Math. Anal. Appl. 180 pp 342– (1993) · Zbl 0794.34013
[13] Gambier B, Acta Math. 33 pp 1– (1910) · JFM 40.0377.02
[14] Grammaticos B Nijhoff F W Ramani A in The Painlevé Property, One Century Later, R. Conte, Editor, 1999,CRM series in Mathematical Physics, Springer-Verlag, Berlin, 413–516
[15] Grammaticos B Ramani A in Application of Analytic and Geometric Methods to Non-linear Differential Equations, Clarkson P A, Editor, 1993,NATO ASI Series C: Math. Phys. Sci., Kluwer, Dordrecht, 299–313 · Zbl 0793.35093
[16] Gromak V I in The Painlevé Property, One Century Later, R. Conte, Editor, 1999,CRM series in Mathematical Physics, Springer-Verlag, Berlin, 687–734
[17] Gromak V I, Tr. Inst. Mat., Minsk 6 pp 65– (2000)
[18] Gromak V I, Diff. Eqns. 30 pp 1037– (1994)
[19] Hone A N W Integrable systems and their finite-dimensional reductions,PhD thesis, Uni-versity of Edinburgh(1996)
[20] Hone A N W, Physica 118 pp 1– (1998)
[21] Ince E L, Ordinary Differential Equations (1956) · Zbl 0063.02971
[22] Jimbo M, Physica 2 pp 407– (1981)
[23] Joshi N, Nonlinearity 16 pp 427– (2003) · Zbl 1064.33020
[24] Joshi N, Phys. Lett. 249 pp 59– (1998) · Zbl 1044.37547
[25] Kudryashov N A, Phys. Lett. 224 pp 353– (1997) · Zbl 0962.35504
[26] Kudryashov N A, J. Phys. A: Math. Gen. 31 pp 9505– (1998) · Zbl 0985.37073
[27] Kudryashov N A, Phys. Lett. 237 pp 206– (1998) · Zbl 0941.34077
[28] Kudryashov N A, ANZIAM J. 44 pp 149– (2002) · Zbl 1056.34102
[29] Lax P D, SIAM Rev. 18 pp 351– (1976) · Zbl 0329.35015
[30] Li Y, J. Math. Phys. 43 pp 1106– (2002) · Zbl 1059.34062
[31] Lukashevich N A, Diff. Eqns. 6 pp 853– (1971)
[32] Milne A E, Stud. Appl. Math. 98 pp 139– (1997) · Zbl 0878.34006
[33] Mugan U, J. Nonl. Math. Phys. 9 pp 282– (2002) · Zbl 1028.34082
[34] Murata Y, Funkcial. Ekvac. 28 pp 1– (1985)
[35] Nijhoff F W, Inverse Problems 12 pp 697– (1996) · Zbl 0860.35124
[36] Okamoto K, Ann. Mat. Pura Appl. 146 pp 337– (1987) · Zbl 0637.34019
[37] Ramani A, Physica 228 pp 160– (1996)
[38] Ramani A, Nonlinearity 13 pp 1073– (2000) · Zbl 0963.37069
[39] Shabat A B, Funct. Anal. Appl. 27 pp 1– (1993)
[40] Tamizhmani K M, J. Phys. A: Math. Gen. 31 pp 5799– (1998) · Zbl 0910.34020
[41] Tamizhmani T, J. Phys. A: Math. Gen. 32 pp 4553– (1999) · Zbl 0944.39004
[42] Tsegel’nik V V, Theo. Math. Phys. 102 pp 265– (1995) · Zbl 0856.35121
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.