zbMATH — the first resource for mathematics

Bayesian inference for the Topp-Leone distribution based on lower \(k\)-record values. (English) Zbl 1362.62056
Summary: In this paper, the lower \(k\)-record values coming from the Topp-Leone distribution are used to construct Bayesian point and interval estimators for the shape parameter, the survival function and the reversed hazard rate function. The Bayes estimators are obtained under symmetric and asymmetric loss functions. We study the problem of predicting future \(k\)-records, and reconstructing past unobserved \(k\)-records. Bayesian estimation of the stress-strength parameter is also discussed. Finally, a simulation study and a real data example are presented for the purpose of illustration and comparison of the suggested point and interval estimators.

62F15 Bayesian inference
62C10 Bayesian problems; characterization of Bayes procedures
PDF BibTeX Cite
Full Text: DOI
[1] Ahmadi, J; Balakrishnan, N, Distribution-free confidence intervals for quantiles and tolerance intervals in terms of \(k\)-records, J. Stat. Comput. Simul., 79, 1219-1233, (2009) · Zbl 1179.62069
[2] Ahmadi, J; Doostparast, M, Bayesian estimation and prediction for some life distributions based on record values, Stat. Pap., 47, 373-392, (2006) · Zbl 1125.62020
[3] Ahsanullah, M., Raqab, M.Z.: Bounds and Characterizations of Record Statistics. Nova Science Publishers, New York (2006) · Zbl 1136.62040
[4] Amini, M; MirMostafaee, SMTK; Ahmadi, J, Log-gamma-generated families of distributions, Statistics, 48, 913-932, (2014) · Zbl 1326.62025
[5] Arnold, B.C., Balakrishnan, N., Nagaraja, H.N.: Records. Wiley, New York (1998) · Zbl 0914.60007
[6] Balakrishnan, N; Doostparast, M; Ahmadi, J, Reconstruction of past records, Metrika, 70, 89-109, (2009) · Zbl 1433.86012
[7] Block, H; Savits, TH; Singh, H, The reversed hazard rate function, Probab. Eng. Inf. Sci., 12, 69-90, (1998) · Zbl 0972.90018
[8] Bowman, KO; Shenton, LR; Gailey, PC, Distribution of the ratio of gamma variates, Commun. Stat.-Simul. Comput., 27, 1-19, (1998) · Zbl 0896.62019
[9] Calabria, R; Pulcini, G, An engineering approach to Bayes estimation for the Weibull distribution, Microelectron. Reliab., 34, 789-802, (1994) · Zbl 0825.62167
[10] Calabria, R; Pulcini, G, Point estimation under asymmetric loss functions for left-truncated exponential samples, Commun. Stat.-Theory Methods, 25, 585-600, (1996) · Zbl 0875.62101
[11] El-Sayed, MA; Abd-Elmougod, GA; Abdel-Khalek, S, Bayesian and non-Bayesian estimation of topp-leone distribution based lower record values, Far East J. Theor. Stat., 45, 133-145, (2013) · Zbl 1306.62068
[12] Genç, Aİ, Moments of order statistics of topp-leone distribution, Stat. Pap., 53, 117-131, (2012) · Zbl 1241.62077
[13] Genç, Aİ, Estimation of \(P(X>Y)\) with topp-leone distribution, J. Stat. Comput. Simul., 83, 326-339, (2013) · Zbl 1348.62039
[14] Ghitany, ME; Kotz, S; Xie, M, On some reliability measures and their stochastic orderings for the topp-leone distribution, J. Appl. Stat., 32, 715-722, (2005) · Zbl 1121.62374
[15] Gradshteyn, I.S., Ryzhik, I.M.: Table of Integrals, Series, and Products, 6th edn. Academic Press, San Diego (2000) · Zbl 0981.65001
[16] Hofmann, G; Balakrishnan, N, Fisher information in \(k\)-records, Ann. Inst. Stat. Math., 56, 383-396, (2004) · Zbl 1056.62062
[17] Jeffreys, H.: The theory of probability. Oxford University Press, Oxford (1939, 1948, 1961) · Zbl 0023.14501
[18] Kalbfleisch, JD; Lawless, JF, Inference based on retrospective ascertainment: an analysis of the data on transfusion-related AIDS, J. Am. Stat. Assoc., 84, 360-372, (1989) · Zbl 0677.62099
[19] Khatib, B; Ahmadi, J; Razmkhah, M, Reconstruction of the past lower record values in a proportional reversed hazard rate model, Statistics, 48, 421-435, (2014) · Zbl 1291.62058
[20] MirMostafaee, SMTK, On the moments of order statistics coming from the topp-leone distribution, Stat. Probab. Lett., 95, 85-91, (2014) · Zbl 1307.62133
[21] Nadar, M; Papadopoulos, A; Kızılaslan, F, Statistical analysis for kumaraswamy’s distribution based on record data, Stat. Pap., 54, 355-369, (2013) · Zbl 1364.62054
[22] Nadarajah, S; Gupta, AK, Characterizations of the beta distribution, Commun. Stat.-Theory Methods, 33, 2941-2957, (2004) · Zbl 1087.62019
[23] Nadarajah, S; Kotz, S, Moments of some J-shaped distributions, J. Appl. Stat., 30, 311-317, (2003) · Zbl 1121.62448
[24] Sindhu, TN; Saleem, M; Aslam, M, Bayesian estimation for topp-leone distribution under trimmed samples, J. Basic Appl. Sci. Res., 3, 347-360, (2013)
[25] Soliman, AA; Al-Aboud, FM, Bayesian inference using record values from Rayleigh model with application, Eur. J. Oper. Res., 185, 659-672, (2008) · Zbl 1137.62319
[26] Topp, CW; Leone, FC, A family of J-shaped frequency functions, J. Am. Stat. Assoc., 50, 209-219, (1955) · Zbl 0064.13601
[27] Varian, HR; Finberg, SE (ed.); Zellner, A (ed.), A Bayesian approach to real estate assessment, 195-208, (1975), Amsterdam
[28] Zellner, A, Bayesian estimation and prediction using asymmetric loss functions, J. Am. Stat. Assoc., 81, 446-451, (1986) · Zbl 0603.62037
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.