zbMATH — the first resource for mathematics

Error analysis of a finite difference method on graded meshes for a time-fractional diffusion equation. (English) Zbl 1362.65089

65M06 Finite difference methods for initial value and initial-boundary value problems involving PDEs
35B65 Smoothness and regularity of solutions to PDEs
Full Text: DOI
[1] H. Brunner, Collocation methods for Volterra Integral and Related Functional Differential Equations, Cambridge Monogr. Appl. Comput. Maths. 15, Cambridge University Press, Cambridge, 2004, . · Zbl 1059.65122
[2] H. Brunner, L. Ling, and M. Yamamoto, Numerical simulations of 2D fractional subdiffusion problems, J. Comput. Phys., 229 (2010), pp. 6613–6622, . · Zbl 1197.65143
[3] R. Courant and D. Hilbert, Methods of Mathematical Physics. Vol. I, Interscience Publishers, New York, 1953. · Zbl 0053.02805
[4] E. Cuesta, C. Lubich, and C. Palencia, Convolution quadrature time discretization of fractional diffusion-wave equations, Math. Comp., 75 (2006), pp. 673–696, . · Zbl 1090.65147
[5] K. Diethelm, The Analysis of Fractional Differential Equations, Lecture Notes in Math., Springer, Berlin, 2010. · Zbl 1215.34001
[6] P. A. Farrell, A. F. Hegarty, J. J. H. Miller, E. O’Riordan, and G. I. Shishkin, Robust Computational Techniques for Boundary Layers, Appl. Math. 16, Chapman & Hall/CRC, Boca Raton, FL, 2000. · Zbl 0964.65083
[7] D. Henry, Geometric Theory of Semilinear Parabolic Equations, Lecture Notes in Math. 840, Springer, Berlin, 1981. · Zbl 0456.35001
[8] B. Jin, R. Lazarov, J. Pasciak, and Z. Zhou, Error analysis of semidiscrete finite element methods for inhomogeneous time-fractional diffusion, IMA J. Numer. Anal., 35 (2015), pp. 561–582, . · Zbl 1321.65142
[9] B. Jin, R. Lazarov, and Z. Zhou, An analysis of the L1 scheme for the subdiffusion equation with nonsmooth data, IMA J. Numer. Anal., 36 (2016), pp. 197–221, . · Zbl 1336.65150
[10] B. Jin, R. Lazarov, and Z. Zhou, Two fully discrete schemes for fractional diffusion and diffusion-wave equations with nonsmooth data, SIAM J. Sci. Comput., 38 (2016), pp. A146–A170, . · Zbl 1381.65082
[11] B. Jin and Z. Zhou, An analysis of Galerkin proper orthogonal decomposition for subdiffusion, ESAIM Math. Model. Numer. Anal., 51 (2017), pp. 89–113, . · Zbl 1365.65224
[12] X. Li and C. Xu, Existence and uniqueness of the weak solution of the space-time fractional diffusion equation and a spectral method approximation, Commun. Comput. Phys., 8 (2010), pp. 1016–1051, . · Zbl 1364.35424
[13] Y. Lin and C. Xu, Finite difference/spectral approximations for the time-fractional diffusion equation, J. Comput. Phys., 225 (2007), pp. 1533–1552, . · Zbl 1126.65121
[14] F. Liu, P. Zhuang, and K. Burrage, Numerical methods and analysis for a class of fractional advection-dispersion models, Comput. Math. Appl., 64 (2012), pp. 2990–3007, . · Zbl 1268.65124
[15] Y. Luchko, Maximum principle for the generalized time-fractional diffusion equation, J. Math. Anal. Appl., 351 (2009), pp. 218–223, . · Zbl 1172.35341
[16] Y. Luchko, Initial-boundary-value problems for the one-dimensional time-fractional diffusion equation, Fract. Calc. Appl. Anal., 15 (2012), pp. 141–160, . · Zbl 1276.26018
[17] R. Metzler and J. Klafter, The random walk’s guide to anomalous diffusion: a fractional dynamics approach, Phys. Rep., 339 (2000), pp. 1–77, . · Zbl 0984.82032
[18] I. Podlubny, Fractional Differential Equations, Math. Sci. Eng., Academic Press, San Diego, CA, 1999. · Zbl 0924.34008
[19] K. Sakamoto and M. Yamamoto, Initial value/boundary value problems for fractional diffusion-wave equations and applications to some inverse problems, J. Math. Anal. Appl., 382 (2011), pp. 426–447, . · Zbl 1219.35367
[20] M. Stynes, Too much regularity may force too much uniqueness, Fract. Calc. Appl. Anal., 19 (2016), pp. 1554–1562. · Zbl 1353.35306
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.