Singular boundary method for heat conduction problems with certain spatially varying conductivity. (English) Zbl 1364.65217

Summary: The singular boundary method (SBM) is a recent boundary-type meshless collocation method, in which the solution of a given problem is expanded as a linear combination of the fundamental solutions in terms of the source points. The method circumvents the fictitious boundary long perplexing the method of fundamental solution (MFS) by the introduction of the concept of origin intensity factors (OIFs). This paper documents the first attempt to extend the method to heat conduction problems in nonhomogeneous materials. We derive the fundamental solutions of heat conduction problems with the thermal conductivity of the quadratic, exponential and trigonometric material variations in three directions. Furthermore, we firstly theoretically derive the value of the OIF for the natural logarithm function, which is later extended to the OIFs for a group of fundamental solutions. The feasibility, accuracy and stability of the presented SBM formulation are confirmed for both two- (2D) and three-dimensional (3D) examples.


65M80 Fundamental solutions, Green’s function methods, etc. for initial value and initial-boundary value problems involving PDEs
65M70 Spectral, collocation and related methods for initial value and initial-boundary value problems involving PDEs
35K05 Heat equation
Full Text: DOI


[1] Birman, V.; Byrd, L. W., Modeling and analysis of functionally graded materials and structures, Appl. Mech. Rev., 60, 5, 195-216, (2007)
[2] Jin, Z. H., An asymptotic solution of temperature field in a strip a functionally graded material, Int. Commun. Heat Mass Transfer, 29, 7, 887-895, (2002)
[3] Hosseini, S. M.; Akhlaghi, M.; Shakeri, M., Transient heat conduction in functionally graded thick hollow cylinders by analytical method, Heat Mass Transf., 43, 7, 669-675, (2007)
[4] Golberg, M. A.; Chen, C. S., The method of fundamental solutions for potential, Helmholtz and diffusion problems, (Boundary Integral Methods-Numerical and Mathematical Aspects, (1998), Computational Mechanics Publications), 103-176 · Zbl 0945.65130
[5] Chen, C. S.; Karageorghis, A.; Smyrlis, Y. S., The method of fundamental solutions: A meshless method, (2008), Dynamic Publishers USA
[6] Karageorghis, A.; Lesnic, D.; Marin, L., A survey of applications of the MFS to inverse problems, Inverse Probl. Sci. Eng., 19, 3, 309-336, (2011) · Zbl 1220.65157
[7] Wei, X.; Chen, W.; Chen, B., An ACA accelerated MFS for potential problems, Eng. Anal. Bound. Elem., 41, 0, 90-97, (2014) · Zbl 1297.65198
[8] W. Chen, Y. Gu, Recent advances on singular boundary method, in: Joint International Workshop on Trefftz Method VI and Method of Fundamental Solution II, Taiwan 2011.
[9] Chen, W.; Tanaka, M., A meshless, integration-free, and boundary-only RBF technique, Comput. Math. Appl., 43, 3-5, 379-391, (2002) · Zbl 0999.65142
[10] Fu, Z. J.; Chen, W.; Yang, H. T., Boundary particle method for Laplace transformed time fractional diffusion equations, J. Comput. Phys., 235, 0, 52-66, (2013) · Zbl 1291.76256
[11] Young, D.; Chen, K.; Lee, C., Novel meshless method for solving the potential problems with arbitrary domain, J. Comput. Phys., 209, 1, 290-321, (2005) · Zbl 1073.65139
[12] Chen, K. H.; Kao, J. H.; Chen, J. T.; Wu, K. L., Desingularized meshless method for solving Laplace equation with over-specified boundary conditions using regularization techniques, Comput. Mech., 43, 6, 827-837, (2009) · Zbl 1165.65073
[13] Šarler, B., Solution of potential flow problems by the modified method of fundamental solutions: formulations with the single layer and the double layer fundamental solutions, Eng. Anal. Bound. Elem., 33, 12, 1374-1382, (2009) · Zbl 1244.76084
[14] Chen, J. T.; Chang, M. H.; Chen, K. H.; Lin, S. R., The boundary collocation method with meshless concept for acoustic eigenanalysis of two-dimensional cavities using radial basis function, J. Sound Vib., 257, 4, 667-711, (2002)
[15] Liu, Y. J., A new boundary meshfree method with distributed sources, Eng. Anal. Bound. Elem., 34, 11, 914-919, (2010) · Zbl 1244.65189
[16] Chen, C. S.; Cho, H. A.; Golberg, M. A., Some comments on the ill-conditioning of the method of fundamental solutions, Eng. Anal. Bound. Elem., 30, 5, 405-410, (2006) · Zbl 1187.65136
[17] Liu, C. S., An equilibrated method of fundamental solutions to choose the best source points for the Laplace equation, Eng. Anal. Bound. Elem., 36, 8, 1235-1245, (2012) · Zbl 1352.65637
[18] Alves, C. J.S., On the choice of source points in the method of fundamental solutions, Eng. Anal. Bound. Elem., 33, 12, 1348-1361, (2009) · Zbl 1244.65216
[19] Chen, W.; Fu, Z.; Wei, X., Potential problems by singular boundary method satisfying moment condition, CMES Comput. Model. Eng. Sci., 54, 1, 65-85, (2009) · Zbl 1231.65245
[20] Wei, X.; Chen, W.; Fu, Z. J., Solving inhomogeneous problems by singular boundary method, J. Mar. Sci. Technol.-Taiwan, 21, 1, 8-14, (2013)
[21] Kassab, A. J.; Divo, E., A generalized boundary integral equation for isotropic heat conduction with spatially varying thermal conductivity, Eng. Anal. Bound. Elem., 18, 4, 273-286, (1996)
[22] Divo, E.; Kassab, A. J., Boundary element method for heat conduction: with applications in non-homogeneous media, (2003), WIT Pr./Computational Mechanics · Zbl 1012.80013
[23] Power, H., On the existence of kassab and divo’s generalized boundary integral equation formulation for isotropic heterogeneous steady state heat conduction problems, Eng. Anal. Bound. Elem., 20, 4, 341-345, (1997)
[24] Bonnet, M.; Guiggiani, M., Comments about the paper entitled “A generalized boundary integral equation for isotropic heat conduction with spatially varying thermal conductivity” by A. J. kassab and E. divo, Eng. Anal. Bound. Elem., 22, 3, 235-240, (1998) · Zbl 1002.74596
[25] Wang, H.; Qin, Q. H.; Kang, Y. L., A meshless model for transient heat conduction in functionally graded materials, Comput. Mech., 38, 1, 51-60, (2006) · Zbl 1097.80001
[26] Abdullah, H.; Clements, D. L.; Ang, W. T., A boundary element method for the solution of a class of heat conduction problems for inhomogeneous media, Eng. Anal. Bound. Elem., 11, 4, 313-318, (1993)
[27] Shaw, R. P., Green’s functions for heterogeneous media potential problems, Eng. Anal. Bound. Elem., 13, 3, 219-221, (1994)
[28] Manolis, G. D.; Shaw, R. P., Boundary integral formulation for 2D and 3D thermal problems exhibiting a linearly varying stochastic conductivity, Comput. Mech., 17, 6, 406-417, (1996) · Zbl 0858.73078
[29] Shaw, R. P.; Manolis, G. D., Two dimensional heat conduction in graded materials using conformal mapping, Comm. Numer. Methods Engrg., 19, 3, 215-221, (2003) · Zbl 1016.65070
[30] Gray, L. J.; Kaplan, T.; Richardson, J. D.; Paulino, G. H., Green’s functions and boundary integral analysis for exponentially graded materials: heat conduction, J. Appl. Mech., 70, 4, 543-549, (2003) · Zbl 1110.74461
[31] Berger, J. R.; Martin, P. A.; Mantiè, V.; Gray, L. J., Fundamental solutions for steady-state heat transfer in an exponentially graded anisotropic material, Z. Angew. Math. Phys., 56, 2, 293-303, (2005) · Zbl 1063.35012
[32] Kuo, H. Y.; Chen, T. Y., Steady and transient green’s functions for anisotropic conduction in an exponentially graded solid, Internat J. Solids Struct., 42, 3-4, 1111-1128, (2005) · Zbl 1086.74500
[33] Marin, L.; Lesnic, D., The method of fundamental solutions for nonlinear functionally graded materials, Internat J. Solids Struct., 44, 21, 6878-6890, (2007) · Zbl 1166.80300
[34] Sutradhar, A.; Paulino, G. H., The simple boundary element method for transient heat conduction in functionally graded materials, Comput. Methods Appl. Mech. Engrg., 193, 42-44, 4511-4539, (2004) · Zbl 1073.80005
[35] Cheng, A. H.-D.; Cheng, D. T., Heritage and early history of the boundary element method, Eng. Anal. Bound. Elem., 29, 3, 268-302, (2005) · Zbl 1182.65005
[36] Sun, L.; Chen, W.; Zhang, C., A new formulation of regularized meshless method applied to interior and exterior anisotropic potential problems, Appl. Math. Model., 37, 12-13, 7452-7464, (2013) · Zbl 1426.65201
[37] Gu, Y.; Chen, W.; He, X.-Q., Singular boundary method for steady-state heat conduction in three dimensional general anisotropic media, Int. J. Heat Mass Transfer, 55, 17-18, 4837-4848, (2012)
[38] WebElements. http://www.webelements.com/.
[39] Partridge, P. W.; Brebbia, C. A.; Wrobel, L. C., The dual reciprocity boundary element method, (1992), Computational Mechanics Publication Southampton, Boston · Zbl 0758.65071
[40] Liao, S.-J., General boundary element method for Poisson equation with spatially varying conductivity, Eng. Anal. Bound. Elem., 21, 1, 23-38, (1998) · Zbl 0940.65134
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.