×

zbMATH — the first resource for mathematics

Fast nonnegative least squares through flexible Krylov subspaces. (English) Zbl 1365.65161

MSC:
65K05 Numerical mathematical programming methods
90C20 Quadratic programming
65D18 Numerical aspects of computer graphics, image analysis, and computational geometry
94A08 Image processing (compression, reconstruction, etc.) in information and communication theory
Software:
AIR tools
PDF BibTeX XML Cite
Full Text: DOI arXiv
References:
[1] O. Axelsson, Iterative Solution Methods, Cambridge University Press, Cambridge, 1994. · Zbl 0795.65014
[2] J. M. Bardsley and J. G. Nagy, Covariance-preconditioned iterative methods for nonnegatively constrained astronomical imaging, SIAM J. Matrix Anal. Appl., 27 (2006), pp. 1184–1197. · Zbl 1102.65044
[3] A. Beck and M. Teboulle, Fast gradient-based algorithms for constrained total variation image denoising and deblurring problems, IEEE Trans. Image Process., 18 (2009), pp. 2419–2434. · Zbl 1371.94049
[4] A. Beck and M. Teboulle, A fast iterative shrinkage-thresholding algorithm for linear inverse problems, SIAM J. Imaging Sci., 2 (2009), pp. 183–202. · Zbl 1175.94009
[5] S. Berisha and J. G. Nagy, Iterative image restoration, in Academic Press Library in Signal Processing, Vol. 4, R. Chellappa and S. Theodoridis, eds., Academic Press, Amsterdam, 2014, pp. 193–243.
[6] \AA. Björck, Numerical Methods for Least Squares Problems, SIAM, Philadelphia, 1996.
[7] A. M. Bruckstein, M. Elad, and M. Zibulevsky, On the uniqueness of nonnegative sparse solutions to underdetermined systems of equations, IEEE Trans. Inform. Theory, 54 (2008), pp. 4813–4820. · Zbl 1319.15007
[8] D. Calvetti, G. Landi, L. Reichel, and F. Sgallari, Non-negativity and iterative methods for ill-posed problems, Inverse Problems, 20 (2004), pp. 1747–1758. · Zbl 1077.65041
[9] R. E. Carrillo, J. D. McEwen, and Y. Wiaux, Sparsity averaging reweighted analysis (SARA): A novel algorithm for radio-interferometric imaging, Monthly Not. Roy. Astron. Soc., 426 (2012), pp. 1223–1234.
[10] S. Gazzola and J. G. Nagy, Generalized Arnoldi–Tikhonov method for sparse reconstruction, SIAM J. Sci. Comput., 36 (2014), pp. B225–B247. · Zbl 1296.65061
[11] S. Gazzola, P. Novati, and M. R. Russo, On Krylov projection methods and Tikhonov regularization, Electron. Trans. Numer. Anal., 44 (2015), pp. 83–123. · Zbl 1312.65065
[12] G. H. Golub and W. Kahan, Calculating the singular values and pseudo-inverse of a matrix, J. SIAM Ser. B Numer. Anal., 2 (1965), pp. 205–224. · Zbl 0194.18201
[13] M. Hanke, J. G. Nagy, and C. Vogel, Quasi-Newton approach to nonnegative image restorations, Linear Algebra Appl., 316 (2000), pp. 223–236. · Zbl 0960.65071
[14] P. C. Hansen, Discrete Inverse Problems: Insight and Algorithms, Fundam. Algorithm, SIAM, Philadelphia, 2010. · Zbl 1197.65054
[15] P. C. Hansen and M. Saxild-Hansen, AIR tools — a MATLAB package of algebraic iterative reconstruction methods, J. Comput. Appl. Math., 236 (2012), pp. 2167–2178. · Zbl 1241.65042
[16] L. Kaufman, Maximum likelihood, least squares, and penalized least squares for PET, IEEE Trans. Med. Imaging, 12 (1993), pp. 200–214.
[17] M. Lustig, D. L. Donoho, J. M. Santos, and J. M. Pauly, Compressed sensing MRI, IEEE Signal Process. Mag., 25 (2008), pp. 72–82.
[18] K. Morikuni, L. Reichel, and K. Hayami, FGMRES for linear discrete ill-posed problems, Appl. Numer. Math., 75 (2014), pp. 175–187. · Zbl 1302.65081
[19] J. G. Nagy, K. M. Palmer, and L. Perrone, Iterative methods for image deblurring: A Matlab object oriented approach, Numer. Algorithms, 36 (2004), pp. 73–93. · Zbl 1048.65039
[20] J. G. Nagy and Z. Strakos, Enforcing nonnegativity in image reconstruction algorithms, in Mathematical Modeling, Estimation, and Imaging, Proc. SPIE 4121, Bellingham, WA, 2000, pp. 182–190.
[21] Y. Notay, Flexible conjugate gradients, SIAM J. Sci. Comput., 22 (2000), pp. 1444–1460. · Zbl 0980.65030
[22] Y. Saad, Iterative Methods for Sparse Linear Systems, 2nd ed., SIAM, Philadelphia, PA, 2003. · Zbl 1031.65046
[23] V. Simoncini and D. B. Szyld, Recent computational developments in Krylov subspace methods for linear systems, Numer. Linear Algebra Appl., 14 (2007), pp. 1–59. · Zbl 1199.65112
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.