×

zbMATH — the first resource for mathematics

Explicit discontinuous Galerkin methods for unsteady problems. (English) Zbl 1365.76117
Summary: In this work we consider a special implementation of a discontinuous Galerkin (DG) method for general unstructured hexahedral element meshes called the discontinuous Galerkin Spectral Element Method (DGSEM). We are solving the compressible Navier-Stokes equations for unsteady turbulent flow simulations. We use explicit time stepping because of the high parallel scalability and also because the physical time scale of the simulation is in the range of the explicit time step restriction. In the explicit DGSEM framework, the efficiency of element-wise operations is highly improved compared to standard DG implementations. This improvement is due to collocated interpolation and integration points and tensor product nodal basis functions inside the hexahedron. In the first part of this paper, we describe the DGSEM scheme and derive the element-wise operators. We will conclude this part with accuracy and convergence analysis. The locality of the explicit DGSEM scheme is highly attractive for parallel computing, thus the second part is dedicated to a parallel performance analysis of the code. In the last part, we show the applicability of the scheme with a direct numerical simulation of a weak turbulent flow past a sphere at Reynolds number 1000.

MSC:
76M10 Finite element methods applied to problems in fluid mechanics
65M60 Finite element, Rayleigh-Ritz and Galerkin methods for initial value and initial-boundary value problems involving PDEs
76D05 Navier-Stokes equations for incompressible viscous fluids
35Q30 Navier-Stokes equations
35Q35 PDEs in connection with fluid mechanics
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Bassi, F.; Rebay, S., A high-order accurate discontinuous finite element method for the numerical solution of the compressible navier – stokes equations, J comput phys, 131, 267-279, (1997) · Zbl 0871.76040
[2] Bassi, F.; Rebay, S., A high-order discontinuous Galerkin finite element method solution of the 2d Euler equations, J comput phys, 138, 251-285, (1997) · Zbl 0902.76056
[3] Bassi, F.; Rebay, S., Numerical evaluation of two discontinuous Galerkin methods for the compressible navier – stokes equations, Int J numer methods fluids, 40, 197-207, (2002) · Zbl 1058.76570
[4] Biswas, R.; Devine, K.D.; Flaherty, J., Parallel, adaptive finite element methods for conservation laws, Appl numer math, 14, 255-283, (1994) · Zbl 0826.65084
[5] Black, K., Spectral element approximation of convection – diffusion type problems, Appl numer math, 33, 1-4, 373-379, (2000) · Zbl 0964.65104
[6] Canuto, C.; Hussaini, M.Y.; Quarteroni, A.; Zang, T.A., Spectral methods: fundamentals in single domains, (2006), Springer · Zbl 1093.76002
[7] Castel, N.; Cohen, G.; Durufle, M., Application of discontinuous Galerkin spectral method on hexahedral elements for aeroacoustic, J comput acoust, 17, 2, 175-196, (2009) · Zbl 1257.76047
[8] Cockburn, B.; Hou, S.; Shu, C.-W., The Runge-Kutta local projection discontinuous Galerkin finite element method for conservation laws IV: the multidimensional case, Math comput, 54, 545-581, (1990) · Zbl 0695.65066
[9] Cockburn, B.; Karniadakis, G.E.; Shu, C.-W., Discontinuous Galerkin methods, Lecture notes in computational science and engineering, (2000), Springer
[10] Cockburn, B.; Lin, S.Y.; Shu, C.-W., TVB Runge-Kutta local projection discontinuous Galerkin finite element method for conservation laws III: one dimensional systems, J comput phys, 84, 90-113, (1989) · Zbl 0677.65093
[11] Cockburn, B.; Shu, C.-W., TVB Runge-Kutta local projection discontinuous Galerkin finite element method for conservation laws II: general framework, Math comput, 52, 411-435, (1989) · Zbl 0662.65083
[12] Cockburn, B.; Shu, C.-W., The Runge-Kutta local projection p1-discontinuous Galerkin method for scalar conservation laws, M^{2}an, 25, 337-361, (1991) · Zbl 0732.65094
[13] Cockburn, B.; Shu, C.-W., The Runge-Kutta discontinuous Galerkin method for conservation laws V: multidimensional systems, J comput phys, 141, 199-224, (1998) · Zbl 0920.65059
[14] Fagherazzi, S.; Furbish, D.J.; Rasetarinera, P.; Hussaini, M.Y., Application of the discontinuous spectral Galerkin method to groundwater flow, Adv water resour, 27, 129-140, (2004)
[15] Fagherazzi, S.; Rasetarinera, P.; Hussaini, M.Y.; Furbish, D.J., Numerical solution of the dam-break problem with a discontinuous Galerkin method, J hydraul eng, 130, 6, 532-539, (2004)
[16] Gassner, G.; Lörcher, F.; Munz, C.-D.; Hesthaven, J.S., Polymorphic nodal elements and their application in discontinuous Galerkin methods, J comput phys, 228, 1573-1590, (2009) · Zbl 1267.76062
[17] Gregor, G.; David, A.K., A comparison of the dispersion and dissipation errors of Gauss and Gauss-lobatto discontinuous Galerkin spectral element methods, SIAM J sci comput, 33, 5, 2560-2579, (2011) · Zbl 1255.65089
[18] Giraldo, F.X.; Hesthaven, J.S.; Warburton, T., Nodal high-order discontinuous Galerkin methods for the spherical shallow water equations, J comput phys, 181, 2, 499-525, (2002) · Zbl 1178.76268
[19] Giraldo, F.X.; Restelli, M., A study of spectral element and discontinuous Galerkin methods for the navier – stokes equations in nonhydrostatic mesoscale atmospheric modeling: equation sets and test cases, J comput phys, 227, 3849-3877, (2008) · Zbl 1194.76189
[20] Hartmann, R.; Houston, P., Symmetric interior penalty DG methods for the compressible navier – stokes equations I: method formulation, Int J numer anal model, 3, 1, 1-20, (2006) · Zbl 1129.76030
[21] Hesthaven, J.S.; Warburton, T., Nodal discontinuous Galerkin methods: algorithms, analysis, and applications, (2008), Springer Verlag New York · Zbl 1134.65068
[22] Klaij, C.M.; van der Vegt, J.J.W.; van der Ven, H., Spacetime discontinuous Galerkin method for the compressible navier – stokes equations, J comput phys, 217, 2, 589-611, (2006) · Zbl 1099.76035
[23] Kopriva, D.A.; Woodruff, S.L.; Hussaini, M.Y., Discontinuous spectral element approximation of maxwell’s equations, () · Zbl 0957.78023
[24] Kopriva, D.A.; Woodruff, S.L.; Hussaini, M.Y., Computation of electromagnetic scattering with a non-conforming discontinuous spectral element method, Int J numer methods eng, 53, (2002) · Zbl 0994.78020
[25] Kopriva, David, Metric identities and the discontinuous spectral element method on curvilinear meshes, J sci comput, 26, 3, 301-327, (2006) · Zbl 1178.76269
[26] Kopriva, David; Gassner, Gregor, On the quadrature and weak form choices incollocation type discontinuous Galerkin spectral element methods, J sci comput, 44, 2, 136-155, (2010) · Zbl 1203.65199
[27] Kopriva, David A., Implementing spectral methods for partial differential equations, (2009), Springer · Zbl 1172.65001
[28] Li, B.Q., Discontinuous finite elements in fluid dynamics and heat transfer, (2006), Springer-Verlag Berlin · Zbl 1110.76001
[29] Peraire, J.; Persson, P.-O., The compact discontinuous Galerkin (CDG) method for elliptic problems, SIAM J sci comput, 30, 4, 1806-1824, (2008) · Zbl 1167.65436
[30] Reed WH, Hill TR. Triangular mesh methods for the neutron transport equation. Technical Report LA-UR-73-479, Los Alamos Scientific Laboratory; 1973.
[31] Restelli, M.; Giraldo, F.X., A conservative discontinuous Galerkin semi-implicit formulation for the navier – stokes equations in nonhydrostatic mesoscale modeling, SIAM J sci comput, 31, 3, 2231-2257, (2009) · Zbl 1405.65127
[32] Tomboulides, A.G.; Orszag, S.A., Numerical investigation of transitional and weak turbulent flow past a sphere, J fluid mech, 416, 45-73, (2000) · Zbl 1156.76419
[33] Toro, E.F., Riemann solvers and numerical methods for fluid dynamics, (1999), Springer · Zbl 0923.76004
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.