×

zbMATH — the first resource for mathematics

Local spectral gap in simple Lie groups and applications. (English) Zbl 1366.22004
One of the main motivations for this paper is to identify analogues of the results by J. Bourgain and A. Gamburd [ibid. 171, No. 1, 83–121 (2008; Zbl 1135.22010); J. Eur. Math. Soc. (JEMS) 14, No. 5, 1455–1511 (2012; Zbl 1254.43010)] and Y. Benoist and N. de Saxcé [Invent. Math. 205, No. 2, 337–361 (2016; Zbl 1357.22003)] that apply to general simple Lie groups. By analogy with the compact case, the authors introduce a notion of spectral gap for infinite measure preserving actions, which in the case of left translation actions on locally compact groups, implies a uniqueness property for its left Haar measures as finitely additive measures. Applications are given to the Banach-Ruziewicz problem, orbit equivalence rigidity, continuous and monotone expanders, and bounded random walks.

MSC:
22D40 Ergodic theory on groups
22E30 Analysis on real and complex Lie groups
22E46 Semisimple Lie groups and their representations
28D05 Measure-preserving transformations
43A75 Harmonic analysis on specific compact groups
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Abért, M; Elek, G, Dynamical properties of profinite actions, Ergodic Theory Dyn. Syst., 32, 1805-1835, (2012) · Zbl 1297.37004
[2] Abért, M; Jaikin-Zapirain, A; Nikolov, N, The rank gradient from a combinatorial viewpoint, Groups Geom. Dyn., 5, 213-230, (2011) · Zbl 1284.20047
[3] Babai, L., Nikolov, N., Pyber, L.: Product growth and mixing in finite groups. In: 19th ACM-SIAM Symposium on Discrete Algorithms. SIAM, pp. 248-257 (2008) · Zbl 1192.60016
[4] Banach, S, Sur le problème de la mesure, Fund. Math., 4, 7-33, (1923) · JFM 49.0145.03
[5] Bekka, M., de la Harpe, P., Valette, A.: Kazhdan’s property (T), New Mathematical Monographs, vol. 11. Cambridge University Press, Cambridge, xiv+472 pp (2008) · Zbl 1146.22009
[6] Benoist, Y; Saxcè, N, A spectral gap theorem in simple Lie groups, Invent. Math., 205, 337-361, (2016) · Zbl 1357.22003
[7] Bourgain, J, Expanders and dimensional expansion, Comptes Rendus Mathematique, 347, 357-362, (2009) · Zbl 1160.22006
[8] Bourgain, J; Gamburd, A, Uniform expansion bounds for Cayley graphs of \(SL_{2}({\mathbb{F}}_{p})\), Ann. Math. (2), 167, 625-642, (2008) · Zbl 1216.20042
[9] Bourgain, J; Gamburd, A, On the spectral gap for finitely-generated subgroups of \(SU(2)\), Invent. Math., 171, 83-121, (2008) · Zbl 1135.22010
[10] Bourgain, J; Gamburd, A, A spectral gap theorem in \(SU(d)\), J. Eur. Math. Soc. (JEMS), 14, 1455-1511, (2012) · Zbl 1254.43010
[11] Bourgain, J; Yehudayoff, A, Expansion in \(SL_2({\mathbb{R}})\) and monotone expanders, Geom. Funct. Anal., 23, 1-41, (2013) · Zbl 1268.05103
[12] Breuillard, E.: A strong Tits alternative (preprint). arXiv:0804.1395 · Zbl 1149.20039
[13] Breuillard, E; Gelander, T, On dense free subgroups of Lie groups, J. Algebra, 261, 448-467, (2003) · Zbl 1014.22007
[14] Breuillard, E; Gelander, T, A topological Tits alternative, Ann. Math., 166, 427-474, (2007) · Zbl 1149.20039
[15] Connes, A; Feldman, J; Weiss, B, An amenable equivalence relations is generated by a single transformation, Ergodic Theory Dyn. Syst., 1, 431-450, (1981) · Zbl 0491.28018
[16] Connes, A; Weiss, B, Property T and asymptotically invariant sequences, Israel J. Math., 37, 209-210, (1980) · Zbl 0479.28017
[17] de Cornulier, Y., de la Harpe: Metric geometry of locally compact groups, book in progress (preprint). arXiv:1403.3796 · Zbl 1352.22001
[18] Drinfeld, V, Finitely-additive measures on \(S^2\) and \(S^3\), invariant with respect to rotations, Funct. Anal. Appl., 18, 245-246, (1984) · Zbl 0576.28019
[19] Eskin, A; Mozes, S; Oh, H, On uniform exponential growth for linear groups, Invent. Math., 160, 1-30, (2005) · Zbl 1137.20024
[20] Furman, A.: A survey of Measured Group Theory, Geometry, Rigidity, and Group Actions, 296-374. The University of Chicago Press, Chicago (2011) · Zbl 1267.37004
[21] Furman, A; Shalom, Y, Sharp ergodic theorems for group actions and strong ergodicity, Ergodic Theory Dyn. Syst., 19, 1037-1061, (1999) · Zbl 0947.37002
[22] Gaboriau, D.: Orbit equivalence and measured group theory. In: Proceedings of the ICM (Hyderabad, India, 2010), vol. III. Hindustan Book Agency, pp. 1501-1527 (2010) · Zbl 1259.37003
[23] Gamburd, A; Jakobson, D; Sarnak, P, Spectra of elements in the group ring of \(SU(2)\), J. Eur. Math. Soc. (JEMS), 1, 51-85, (1999) · Zbl 0916.22009
[24] Grabowski, Ł., Máthe, A., Pikhurko, O.: Measurable equidecompositions for group actions with an expansion property (preprint). arXiv:1601.02958 · Zbl 1135.22010
[25] Helfgott, H, Growth and generation in \(SL_2({\mathbb{Z}}/p{\mathbb{Z}})\), Ann. Math., 167, 601-623, (2008) · Zbl 1213.20045
[26] Houdayer, C; Vaes, S, Type III factors with unique Cartan decomposition, J. Math. Pures Appl., 100, 564-590, (2013) · Zbl 1291.46052
[27] Ioana, A.: Orbit equivalence and Borel reducibility rigidity for profinite actions with spectral gap J. Eur. Math. Soc. (JEMS) (preprint, to appear). arXiv:1309.3026 · Zbl 1375.37010
[28] Ioana, A.: Strong ergodicity, property (T), and orbit equivalence rigidity for translation actions. J. Reine Angew. Math. (preprint, to appear) arXiv:1406.6628 · Zbl 1379.37004
[29] Junco, A; Rosenblatt, J, Counterexamples in ergodic theory and number theory, Math. Ann., 245, 185-197, (1979) · Zbl 0398.28021
[30] Kesten, H, Symmetric random walks on groups, Trans. Am. Math. Soc., 92, 336-354, (1959) · Zbl 0092.33503
[31] Knapp, AW; Stein, EM, Interwining operators for semisimple groups, Ann. Math., 93, 489-578, (1971) · Zbl 0257.22015
[32] Lindenstrauss, E; Saxcé, N, Hausdorff dimension and subgroups of \(SU(2)\), Israel J. Math., 209, 335-354, (2015) · Zbl 1328.22007
[33] Lubotzky, A.: Discrete Groups, Expanding Graphs and Invariant Measures. With an appendix by Jonathan D. Rogawski, Progress in Mathematics, vol. 125. Birkhäuser Verlag, Basel, xii+195 pp (1994) · Zbl 0826.22012
[34] Lubotzky, A; Mozes, S; Raghunathan, MS, The word and Riemannian metrics on lattices of semisimple groups, Inst. Hautes Études Sci. Publ. Math., 91, 5-53, (2000) · Zbl 0988.22007
[35] Lubotzky, A; Phillips, R; Sarnak, P, Hecke operators and distributing points on the sphere I, Commun. Pure Appl. Math., 39, 149-186, (1986) · Zbl 0619.10052
[36] Lubotzky, A; Phillips, R; Sarnak, P, Hecke operators and distributing points on \(S^2\) II, Commun. Pure Appl. Math., 40, 401-420, (1987) · Zbl 0648.10034
[37] Margulis, G, Some remarks on invariant means, Monatsh. Math., 90, 233-235, (1980) · Zbl 0425.43001
[38] Margulis, G, Finitely-additive invariant measures on Euclidian spaces, Ergodic Theory Dyn. Syst., 2, 383-396, (1982) · Zbl 0532.28012
[39] Masser, DW; Wüstholz, G, Fields of large transcendence degree generated by values of elliptic functions, Invent. Math., 72, 407-464, (1983) · Zbl 0516.10027
[40] Montgomery, D., Zippin, L.: Topological Transformation Groups. Interscience Publishers, New York, xi+282 pp (1955) · Zbl 0068.01904
[41] Oh, H, The ruziewicz problem and distributing points on homogeneous spaces of a compact Lie group, Israel J. Math. (Furstenberg volume), 149, 301-316, (2005) · Zbl 1089.22015
[42] Ozawa, N; Popa, S, On a class of II\(_1\) factors with at most one Cartan subalgebra, Ann. Math. (2), 172, 713-749, (2010) · Zbl 1201.46054
[43] Ornstein, D; Weiss, B, Ergodic theory of amenable groups. I. the rokhlin lemma, Bull. Am. Math. Soc. (N.S.), 1, 161-164, (1980) · Zbl 0427.28018
[44] Popa, S.: Deformation and rigidity for group actions and von Neumann algebras, In Proceedings of the ICM (Madrid, 2006), vol. I, pp. 445-477. European Mathematical Society Publishing House (2007) · Zbl 1132.46038
[45] Popa, S; Vaes, S, Unique Cartan decomposition for II\(_1\) factors arising from arbitrary actions of free groups, Acta Math., 212, 141-198, (2014) · Zbl 1307.46047
[46] Raghunathan, M.S.: Discrete subgroups of Lie groups, Ergebnisse der Mathematik und ihrer Grenzgebiete, Band 68. Springer, New York, ix+227 pp (1972) · Zbl 0254.22005
[47] Ricci, F; Stein, E, Harmonic analysis on nilpotent groups and singular integrals. II. singular kernels supported on sub manifolds, J. Funct. Anal., 78, 56-84, (1988) · Zbl 0645.42019
[48] Rosenblatt, J.: Uniqueness of invariant means for measure-preserving transformations. Trans. Am. Math. Soc. 265 (1981) · Zbl 0464.28008
[49] Salehi Golsefidy, A; Varjú, P, Expansion in perfect groups, Geom. Funct. Anal, 22, 1832-1891, (2012) · Zbl 1284.20044
[50] Sarnak, P; Xue, X, Bounds for multiplicities of automorphic representations, Duke Math. J., 64, 207-227, (1991) · Zbl 0741.22010
[51] Saxcé, N, A product theorem in simple Lie groups, Geom. Funct. Anal., 25, 915-941, (2015) · Zbl 1321.22013
[52] Schmidt, K, Asymptotically invariant sequences and an action of \(SL(2;{\mathbb{Z}})\) on the \(2\)-sphere, Israel J. Math., 37, 193-208, (1980) · Zbl 0485.28018
[53] Schmidt, K, Amenability. kazhdan’s property T, strong ergodicity and invariant means for ergodic group-actions, Ergodic Theory Dyn. Syst., 1, 223-236, (1981) · Zbl 0485.28019
[54] Stein, E.: Harmonic Analysis: Real-variable Methods. Orthogonality and Oscillatory Integrals. Princeton University Press, Princeton (1993) · Zbl 0821.42001
[55] Sullivan, D, For \(n>3\) there is only one finitely additive rotationally invariant measure on the \(n\)-sphere on all Lebesgue measurable sets, Bull. Am. Math. Soc., 4, 121-123, (1981) · Zbl 0459.28009
[56] Varjú, P.: Expansion in \(SL_d({\cal{O}}_K/I)\), \(I\) square-free. J. Eur. Math. Soc. (JEMS) 14, 273-305 (2012) · Zbl 0427.28018
[57] Tao, T, Product set estimates for non-commutative groups, Combinatorica, 28, 547-594, (2008) · Zbl 1254.11017
[58] Tao, T.: Expansion in finite simple groups of Lie type, Graduate Studies in Mathematics, vol. 164. American Mathematical Society, Providence, xiv+303 pp (2015) · Zbl 1191.35118
[59] Wagon, S.: The Banach-Tarski paradox. With a foreword by Jan Mycielski. Encyclopedia of Mathematics and its Applications, vol. 24. Cambridge University Press, Cambridge, xvi+251 pp (1985) · Zbl 0569.43001
[60] Zimmer, RJ, Amenable ergodic group actions and an application to Poisson boundaries of random walks, J. Funct. Anal., 27, 350-372, (1978) · Zbl 0391.28011
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.