# zbMATH — the first resource for mathematics

The fractional Fisher information and the central limit theorem for stable laws. (English) Zbl 1366.60064
Summary: A new information-theoretic approach to the central limit theorem for stable laws is presented. The main novelty is the concept of relative fractional Fisher information, which shares most of the properties of the classical one, included Blachman-Stam type inequalities. These inequalities relate the fractional Fisher information of the sum of $$n$$ independent random variables to the information contained in sums over subsets containing $$n-1$$ of the random variables. As a consequence, a simple proof of the monotonicity of the relative fractional Fisher information in central limit theorems for stable law is obtained, together with an explicit decay rate.

##### MSC:
 60F05 Central limit and other weak theorems 26A33 Fractional derivatives and integrals 94A17 Measures of information, entropy
Full Text:
##### References:
  Shannon, C.E.: A mathematical theory of communication. Bell Syst. Tech. J. 27, 379-423, 623-656 (1948) · Zbl 1154.94303  Stam, AJ, Some inequalities satisfied by the quantities of information of Fisher and Shannon, Inf. Control, 2, 101-112, (1959) · Zbl 0085.34701  Blachman, NM, The convolution inequality for entropy powers, IEEE Trans. Inf. Theory, 2, 267-271, (1965) · Zbl 0134.37401  Lieb, EH, Proof of an entropy conjecture of wehrl, Commun. Math. Phys., 62, 35-41, (1978) · Zbl 0385.60089  Barron, AR, Entropy and the central limit theorem, Ann. Probab., 14, 336-342, (1986) · Zbl 0599.60024  Johnson, O, Entropy inequalities and the central limit theorem, Stoch. Process. Appl., 88, 291-304, (2000) · Zbl 1045.60023  Johnson, O; Barron, AR, Fisher information inequalities and the central limit theorem, Probab. Theory Relat. Fields, 129, 391-409, (2004) · Zbl 1047.62005  Artstein, S; Ball, KM; Barthe, F; Naor, A, Solution of shannon’s problem on the monotonicity of entropy, J. Am. Math. Soc., 17, 975-982, (2004) · Zbl 1062.94006  Artstein, S; Ball, KM; Barthe, F; Naor, A, On the rate of convergence in the entropic central limit theorem, Probab. Theory Relat. Fields, 129, 381-390, (2004) · Zbl 1055.94004  Madiman, M., Barron, A.R.: The monotonicity of information in the central limit theorem and entropy power inequalities. In: Proceedings of IEEE International Symposium Information Theory, pp. 1021-1025. Seattle, WA (2006) · Zbl 0848.60017  Madiman, M; Barron, A, Generalized entropy power inequalities and monotonicity properties of information, IEEE Trans. Inf. Theory, 53, 2317-2329, (2007) · Zbl 1326.94034  Tulino, AM; Verdú, S, Monotonic decrease of the non-gaussianness of the sum of independent random variables: A simple proof, IEEE Trans. Inform. Theory, 52, 4295-4297, (2006) · Zbl 1320.60111  Carlen, EA; Soffer, A, Entropy production by block variable summation and central limit theorems, Commun. Math. Phys., 140, 339-371, (1991) · Zbl 0734.60024  Brown, L.D.: A proof of the central limit theorem motivated by the Cramér-Rao inequality, in Statistics and Probability: Essays in Honor of C.R. Rao, pp. 141-148. Amsterdam, The Netherlands: North-Holland (1982) · Zbl 1047.62005  Linnik, YuV, An information-theoretic proof of the central limit theorem with the lindeberg condition, Theory Probab. Appl., 4, 288-299, (1959) · Zbl 0097.13103  Bobkov, SG; Chistyakov, GP; Götze, F, Fisher information and convergence to stable laws, Bernoulli, 20, 1620-1646, (2014) · Zbl 1315.60031  Bobkov, SG; Chistyakov, GP; Götze, F, Bounds for characteristic functions in terms of quantiles and entropy, Electron. Commun. Probab., 17, 1-9, (2012) · Zbl 1258.60022  Bobkov, SG; Chistyakov, GP; Götze, F, Fisher information and the central limit theorem, Probab. Theory Relat. Fields, 159, 1-59, (2014) · Zbl 1372.60018  Feller, W.: An introduction to probability theory and its applications, vol II., Second edn. John Wiley & Sons Inc., New York (1971) · Zbl 0219.60003  Gnedenko, B.V., Kolmogorov, A.N.: Limit distributions for sums of independent random variables. Addison-Wesley, Cambridge (1954) · Zbl 0056.36001  Laha, R.G., Rohatgi, v.K.: Probability theory, John Wiley & Sons, New York-Chichester-Brisbane, Wiley Series in Probability and Mathematical Statistics (1979) · Zbl 0409.60001  Furioli, G; Pulvirenti, A; Terraneo, E; Toscani, G, On rosenau-type approximations to fractional diffusion equations, Commun. Math. Sci., 13, 1163-1191, (2015) · Zbl 1332.35379  Klafter, J; Zumofen, G; Shlesinger, MF; Mallamace, F (ed.); Stanley, HE (ed.), Long-tailed distributions and non-Brownian transport in complex systems, 85-94, (1997), Amsterdam  Benson, DA; Wheatcraft, SW; Meerschaert, MM, The fractional-order governing equation of Lévy motion, Water Resour. Res., 36, 1413-1423, (2000) · Zbl 1064.93035  Chaves, AS, A fractional diffusion equation to describe Lévy flights, Phys. Lett. A, 239, 13-16, (1998) · Zbl 1026.82524  Gorenko, R; Mainardi, F, Fractional calculus and stable probability distributions, Arch. Mech., 50, 377-388, (1998) · Zbl 0934.35008  Molz, FJ; Fix, GJ; Lu, S, A physical interpretation for the fractional derivative in levy diffusion, Appl. Math. Lett., 15, 907-911, (2002) · Zbl 1043.76056  Schumer, R; Benson, DA; Meerschaert, MM; Wheatcraft, SW, Eulerian derivation of the fractional advection-dispersion equation, J. Contam. Hydrol., 48, 69-88, (2001)  Caffarelli, L; Vazquez, JL, Nonlinear porous medium flow with fractional potential pressure, Arch. Ration. Mech. Anal., 202, 537-565, (2011) · Zbl 1264.76105  Carrillo, JA; Huang, Y; Santos, MC; Vázquez, JL, Exponential convergence towards stationary states for the 1D porous medium equation with fractional pressure, J. Differ. Equ., 258, 736-763, (2015) · Zbl 1307.35311  Vázquez, JL, Barenblatt solutions and asymptotic behaviour for a nonlinear fractional heat equation of porous medium type, J. Eur. Math. Soc. (JEMS), 16, 769-803, (2014) · Zbl 1297.35279  Vázquez, JL, Recent progress in the theory of nonlinear diffusion with fractional Laplacian operators, Discrete Contin. Dyn. Syst. Ser. S, 7, 857-885, (2014) · Zbl 1290.26010  Riesz, M, L’intégrale de Riemann-Liouville et le problème de Cauchy, Acta Math., 81, 1-223, (1949) · Zbl 0033.27601  Stein, E.M.: Singular integrals and differentiability properties of functions. Princeton Mathematical Series, vol. 30. Princeton University Press, Princeton (1970) · Zbl 0207.13501  Lieb, EH, Sharp constants in the Hardy-Littlewood-Sobolev and related inequalities, Ann. Math., 118, 349-374, (1983) · Zbl 0527.42011  Cox, D.R., Hinkley, D.V.: Theoretical Statistics. Chapman & Hall, London (1974) · Zbl 0334.62003  Guo, D.: Relative Entropy and Score Function: New Information-Estimation Relationships through Arbitrary Additive Perturbation. In: Proceedings IEEE International Symposium Information Theory, 2009, pp. 814-818. Seoul, Korea (2009) · Zbl 1047.62005  Hoeffding, W, A class of statistics with asymptotically normal distribution, Ann. Math. Stat., 19, 293-325, (1948) · Zbl 0032.04101  Csiszar, I, Information-type measures of difference of probability distributions and indirect observations, Stud. Sci. Math. Hung., 2, 299-318, (1967) · Zbl 0157.25802  Kullback, S, A lower bound for discrimination information in terms of variation, IEEE Trans. Inf. Theory, 4, 126-127, (1967)  Johnson, O.: A de Bruijn identity for symmetric stable laws. arXiv:1310.2045v1 (2013) · Zbl 0527.42011  Ibragimov, I.A., Linnik, Yu.V.: Independent and stationary sequences of random variables, With a supplementary chapter by I. A. Ibragimov and v. V. Petrov, Translation from the Russian edited by J. F. C. Kingman, pp. 443. Wolters-Noordhoff Publishing, Groningen (1971) · Zbl 0599.60024  Bassetti, F; Ladelli, L; Matthes, D, Central limit theorem for a class of one-dimensional kinetic equations, Probab. Theory Relat. Fields, 150, 77-109, (2011) · Zbl 1225.82055  Bassetti, F; Ladelli, L; Regazzini, E, Probabilistic study of the speed of approach to equilibrium for an inelastic Kac model, J. Stat. Phys., 133, 683-710, (2008) · Zbl 1161.82337  Wong, R, Distributional derivation of an asymptotic expansion, Proc. AMS, 80, 266-270, (1980) · Zbl 0441.41024  Linnik, YuV, Linear forms and statistical criteria. II, Ukrainskii Mat. Zhournal, 5, 247-290, (1953) · Zbl 0052.36701  Linnik, Y.V.: Linear forms and statistical criteria. I,II, Selected Transl. Math. Statist. and Prob., vol. 3, pp. 1-90. Amer. Math. Soc., Providence, RI (1962) · Zbl 1225.82055  Kotz, S; Ostrovskii, IV, A mixture representation of the linnik distribution, Stat. Probab. Lett., 26, 61-64, (1996) · Zbl 0848.60017
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.