×

Adaptive hysteresis compensation on an experimental nanopositioning platform. (English) Zbl 1366.93623

Summary: This paper presents a novel adaptive approach for hysteresis compensation applied to a piezoelectric actuator in one axis of an STM-like lab-made micro-/nanopositioning platform. The idea is to identify a compensating static parametric model, which imitates directly the inverse model of the nonlinearity. In this way, the approach is less complex than those based on model inversion. In addition, the identification is made online, allowing to consider a simple polynomial model, and to adapt its parameters according to the actual hysteresis curve which is faced (ascending or descending path, varying input amplitude, etc.). In order to be able to track possibly fast parameter variations, an original adaptation algorithm is proposed within the Bayesian framework, and including an exponential forgetting factor with optimal data-driven tuning. Illustrative experimental results are finally presented for tracking both triangular and sinusoidal reference signals with varying amplitude.

MSC:

93E03 Stochastic systems in control theory (general)
93C40 Adaptive control/observation systems
93E24 Least squares and related methods for stochastic control systems
93C95 Application models in control theory
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] DOI: 10.1016/j.conengprac.2012.02.010 · doi:10.1016/j.conengprac.2012.02.010
[2] Aljanaideh O., Physica B, 486 (2016) pp 64– (2015)
[3] Barndorff-Nielsen O, Information and exponential families in statistical theory (1978) · Zbl 0387.62011
[4] DOI: 10.1109/LSP.2011.2106119 · doi:10.1109/LSP.2011.2106119
[5] DOI: 10.1109/TCSI.2012.2220452 · doi:10.1109/TCSI.2012.2220452
[6] DOI: 10.1103/PhysRevLett.56.930 · doi:10.1103/PhysRevLett.56.930
[7] Binning G., IBM Journal of Research and Development, 30 (4) pp 355– (1986)
[8] DOI: 10.1002/0471729000 · Zbl 1136.62011 · doi:10.1002/0471729000
[9] DOI: 10.1109/TCST.2007.903345 · doi:10.1109/TCST.2007.903345
[10] DOI: 10.1063/1.4739923 · doi:10.1063/1.4739923
[11] DOI: 10.1016/0005-1098(81)90070-4 · doi:10.1016/0005-1098(81)90070-4
[12] DOI: 10.1109/TASE.2014.2352364 · doi:10.1109/TASE.2014.2352364
[13] DOI: 10.1109/TCST.2014.2386779 · doi:10.1109/TCST.2014.2386779
[14] DOI: 10.1088/0964-1726/6/3/007 · doi:10.1088/0964-1726/6/3/007
[15] Kárný M., Optimized Bayesian dynamic advising (2006)
[16] DOI: 10.3166/ejc.9.407-418 · Zbl 1293.93213 · doi:10.3166/ejc.9.407-418
[17] Kuhnen K., Control and Intelligent Systems, 29 (3) pp 74– (2001)
[18] DOI: 10.1214/aoms/1177729694 · Zbl 0042.38403 · doi:10.1214/aoms/1177729694
[19] DOI: 10.1007/978-0-85729-664-1 · Zbl 1234.93002 · doi:10.1007/978-0-85729-664-1
[20] DOI: 10.1109/TCST.2007.902956 · doi:10.1109/TCST.2007.902956
[21] DOI: 10.1016/0005-1098(81)90083-2 · Zbl 0451.93059 · doi:10.1016/0005-1098(81)90083-2
[22] DOI: 10.1016/j.conengprac.2009.04.013 · doi:10.1016/j.conengprac.2009.04.013
[23] DOI: 10.1016/j.sna.2015.10.027 · doi:10.1016/j.sna.2015.10.027
[24] DOI: 10.1016/j.automatica.2012.05.055 · Zbl 1267.93147 · doi:10.1016/j.automatica.2012.05.055
[25] Södeström T.S., System identification (1989)
[26] DOI: 10.1109/TIE.2012.2206339 · doi:10.1109/TIE.2012.2206339
[27] DOI: 10.1109/TIE.2013.2290758 · doi:10.1109/TIE.2013.2290758
[28] DOI: 10.1109/TMECH.2012.2194301 · doi:10.1109/TMECH.2012.2194301
[29] DOI: 10.1016/0005-1098(86)90015-4 · Zbl 0602.93044 · doi:10.1016/0005-1098(86)90015-4
[30] DOI: 10.1109/TMECH.2009.2023986 · doi:10.1109/TMECH.2009.2023986
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.