×

zbMATH — the first resource for mathematics

Bismut formulas and applications for stochastic (functional) differential equations driven by fractional Brownian motions. (English) Zbl 1367.60081

MSC:
60H15 Stochastic partial differential equations (aspects of stochastic analysis)
60G22 Fractional processes, including fractional Brownian motion
60H07 Stochastic calculus of variations and the Malliavin calculus
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Alòs, E.; Mazet, O.; Nualart, D., Stochastic calculus with respect to Gaussian processes, Ann. Probab., 29, 766-801, (2001) · Zbl 1015.60047
[2] Arnaudon, M.; Thalmaier, A.; Wang, F. Y., Gradient estimates and Harnack inequalities on non-compact Riemannian manifolds, Stoch. Process. Appl., 119, 3653-3670, (2009) · Zbl 1178.58013
[3] Bao, J.; Wang, F. Y.; Yuan, C., Bismut formulae and applications for functional SPDEs, Bull. Sci. Math., 137, 509-522, (2013) · Zbl 1281.60058
[4] Bao, J.; Wang, F. Y.; Yuan, C., Derivative formula and Harnack inequality for degenerate functional sdes, Stoch. Dynam., 13, 1-22, (2013) · Zbl 1262.60052
[5] Baudoin, F.; Ouyang, C., Small-time kernel expansion for solutions of stochastic differential equations driven by fractional Brownian motions, Stoch. Process. Appl., 121, 759-792, (2011) · Zbl 1222.60034
[6] Baudoin, F.; Ouyang, C.; Tindel, S., Upper bounds for the density of solutions of stochastic differential equations driven by fractional Brownian motions, Ann. Inst. H. Poincaré Probab. Statist., 50, 111-135, (2014) · Zbl 1286.60051
[7] Berman, S. M., An asymptotic bound for the tail of the distribution of the maximum of a Gaussian process, Ann. Inst. H. Poincaré Probab. Statist., 21, 47-57, (1985) · Zbl 0605.60043
[8] Bismut, J. M., Large Deviation and the Malliavin Calculus, (1984), Birkhäuser
[9] Boufoussi, B.; Hajji, S., Functional differential equations driven by a fractional Brownian motion, Comput. Math. Appl., 62, 746-754, (2011) · Zbl 1228.60064
[10] Caraballoa, T.; Garrido-Atienzaa, M. J.; Taniguchi, T., The existence and exponential behavior of solutions to stochastic delay evolution equations with a fractional Brownian motion, Nonlinear Anal.: Theory, Methods Appl., 74, 3671-3684, (2011) · Zbl 1218.60053
[11] Coutin, L.; Qian, Z., Stochastic analysis, rough path analysis and fractional Brownian motions, Probab. Theory Relat. Fields, 122, 108-140, (2002) · Zbl 1047.60029
[12] Da Prato, G.; Röckner, M.; Wang, F. Y., Singular stochastic equations on Hilbert space: Harnack inequalities for their transition semigroups, J. Funct. Anal., 257, 992-1017, (2009) · Zbl 1193.47047
[13] Decreusefond, L.; Üstünel, A. S., Stochastic analysis of the fractional Brownian motion, Potential Anal., 10, 177-214, (1998) · Zbl 0924.60034
[14] Diopa, M. A.; Garrido-Atienza, M. J., Retarded evolution systems driven by fractional Brownian motion with Hurst parameter \(H > 1 / 2\), Nonlinear Anal., 97, 15-29, (2014) · Zbl 1287.34067
[15] Dong, Z.; Xie, Y., Ergodicity of linear SPDE driven by Lévy noise, J. Syst. Sci. Complex, 23, 137-152, (2010) · Zbl 1298.60065
[16] Elworthy, K. D.; Li, X. M., Formulae for the derivatives of heat semigroups, J. Funct. Anal., 125, 252-286, (1994) · Zbl 0813.60049
[17] Fan, X. L., Harnack inequality and derivative formula for SDE driven by fractional Brownian motion, Sci. China-Math., 56, 515-524, (2013) · Zbl 1273.60068
[18] Fan, X. L., Harnack-type inequalities and applications for SDE driven by fractional Brownian motion, Stoch. Anal. Appl., 32, 602-618, (2014) · Zbl 1304.60072
[19] Ferrante, M.; Rovira, C., Stochastic delay differential equations driven by fractional Brownian motion with Hurst parameter \(H > 1 / 2\), Bernoulli, 12, 85-100, (2006) · Zbl 1102.60054
[20] Guillin, A.; Wang, F. Y., Degenerate Fokker-Planck equations: bismut formula, gradient estimate and Harnack inequality, J. Differential Equations, 253, 20-40, (2012) · Zbl 1306.60121
[21] Hairer, M., Ergodicity of stochastic differential equations driven by fractional Brownian motion, Ann. Probab., 33, 703-758, (2005) · Zbl 1071.60045
[22] Hairer, M.; Pillai, N. S., Ergodicity of hypoelliptic SDEs driven by fractional Brownian motion, Ann. Inst. H. Poincaré Probab. Statist., 47, 601-628, (2011) · Zbl 1221.60083
[23] Lyons, T., Differential equations driven by rough signals, Rev. Mat. Iberoamericana, 14, 215-310, (1998) · Zbl 0923.34056
[24] Neuenkirch, A.; Nourdin, I.; Tindel, S., Delay equations driven by rough paths, Electron. J. Probab., 13, 2031-2068, (2008) · Zbl 1190.60046
[25] Nikiforov, A. F.; Uvarov, V. B., Special Functions of Mathematical Physics, (1988), Birkhäuser
[26] Nourdin, I.; Simon, T., On the absolute continuity of one-dimensional SDEs driven by a fractional Brownian motion, Statist. Probab. Lett., 76, 907-912, (2006) · Zbl 1091.60008
[27] Nualart, D., The Malliavin Calculus and Related Topics, (2006), Springer-Verlag · Zbl 1099.60003
[28] Nualart, D.; Ouknine, Y., Regularization of differential equations by fractional noise, Stoch. Process. Appl., 102, 103-116, (2002) · Zbl 1075.60536
[29] Nualart, D.; Răşcanu, A., Collect. Math., 53, 55-81, (2002)
[30] Nualart, D.; Saussereau, B., Malliavin calculus for stochastic differential equations driven by a fractional Brownian motion, Stoch. Process. Appl., 119, 391-409, (2009) · Zbl 1169.60013
[31] Priola, E., Formulae for the derivatives of degenerate diffusion semigroups, J. Evol. Equ., 6, 577-600, (2006) · Zbl 1116.35075
[32] Samko, S. G.; Kilbas, A. A.; Marichev, O. I., Fractional Integrals and Derivatives, Theory and Applications, (1993), Gordon and Breach · Zbl 0818.26003
[33] Saussereau, B., Transportation inequalities for stochastic differential equations driven by a fractional Brownian motion, Bernoulli, 18, 1-23, (2012) · Zbl 1242.60056
[34] Wang, F. Y., Harnack inequalities on manifolds with boundary and applications, J. Math. Pures Appl., 94, 304-321, (2010) · Zbl 1207.58028
[35] Wang, F. Y.; Xu, L., Derivative formulae and applications for hyperdissipative stochastic Navier-Stokes/Burgers equations, Infin. Dimens. Anal. Quantum Probab. Relat. Top., 15, 1-19, (2012)
[36] Wang, F. Y.; Yuan, C., Harnack inequalities for functional SDEs with multiplicative noise and applications, Stoch. Process. Appl., 121, 2692-2710, (2011) · Zbl 1227.60080
[37] Wang, F. Y.; Zhang, X., Derivative formula and applications for degenerate diffusion semigroups, J. Math. Pures Appl., 99, 726-740, (2013) · Zbl 1328.60141
[38] Zähle, M., Integration with respect to fractal functions and stochastic calculus I, Probab. Theory Relat. Fields, 111, 333-374, (1998) · Zbl 0918.60037
[39] Zhang, X., Stochastic flows and bismut formulas for stochastic Hamiltonian systems, Stoch. Process. Appl., 120, 1929-1949, (2010) · Zbl 1200.60049
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.