×

Robust error analysis of coupled mixed methods for Biot’s consolidation model. (English) Zbl 1368.65234

Summary: We study the a priori error analysis of finite element methods for Biot’s consolidation model. We consider a formulation which has the stress tensor, the fluid flux, the solid displacement, and the pore pressure as unknowns. Two mixed finite elements, one for linear elasticity and the other for mixed Poisson problems are coupled for spatial discretization, and we show that any pair of stable mixed finite elements is available. The novelty of our analysis is that the error estimates of all the unknowns are robust for material parameters. Specifically, the analysis does not need a uniformly positive storage coefficient, and the error estimates are robust for nearly incompressible materials. Numerical experiments illustrating our theoretical analysis are included.

MSC:

65N30 Finite element, Rayleigh-Ritz and Galerkin methods for boundary value problems involving PDEs
65N12 Stability and convergence of numerical methods for boundary value problems involving PDEs

Software:

FEniCS; SyFi
PDF BibTeX XML Cite
Full Text: DOI arXiv

References:

[1] Anandarajah, A.: Computational Methods in Elasticity and Plasticity: Solids and Porous Media. SpringerLink: Bücher, Springer, New York (2010) · Zbl 1211.74001
[2] Arnold, DN; Brezzi, F, Mixed and nonconforming finite element methods: implementation, postprocessing and error estimates, RAIRO Modél. Math. Anal. Numér, 19, 7-32, (1985) · Zbl 0567.65078
[3] Arnold, DN; Brezzi, F; Douglas, J, PEERS: a new mixed finite element for plane elasticity, Jpn. J. Appl. Math., 1, 347-367, (1984) · Zbl 0633.73074
[4] Arnold, DN; Douglas, J; Gupta, CP, A family of higher order mixed finite element methods for plane elasticity, Numer. Math., 45, 1-22, (1984) · Zbl 0558.73066
[5] Arnold, D.N., Falk, R.S., Winther, R.: Mixed finite element methods for linear elasticity with weakly imposed symmetry. Math. Comp. 76(260), 1699-1723 (electronic) (2007) · Zbl 1118.74046
[6] Arnold, DN; Lee, JJ, Mixed methods for elastodynamics with weak symmetry, SIAM J. Numer. Anal., 52, 2743-2769, (2014) · Zbl 1309.74033
[7] Biot, MA, Theory of elasticity and consolidation for a porous anisotropic solid, J. Appl. Phys., 26, 182-185, (1955) · Zbl 0067.23603
[8] Boffi, D; Brezzi, F; Fortin, M, Reduced symmetry elements in linear elasticity, Commun. Pure Appl. Anal., 8, 95-121, (2009) · Zbl 1154.74041
[9] Braess, D.: Finite Elements: Theory, Fast Solvers, and Applications in Solid Mechanics, 3rd edn. Cambridge University Press, Cambridge (2007) · Zbl 1118.65117
[10] Brezzi, F., Fortin, M.: Mixed and Hybrid Finite Element Methods, Springer Series in Computational Mathematics, vol. 15. Springer, New York (1992) · Zbl 0788.73002
[11] Brezzi, F; Douglas, J; Marini, LD, Two families of mixed finite elements for second order elliptic problems, Numer. Math., 47, 217-235, (1985) · Zbl 0599.65072
[12] Cai, Z., Starke, G.: First-order system least squares for the stress-displacement formulation: linear elasticity. SIAM J. Numer. Anal. 41(2), 715-730 (electronic) (2003) · Zbl 1063.74099
[13] Chen, Y; Luo, Y; Feng, M, Analysis of a discontinuous Galerkin method for the biot’s consolidation problem, Appl. Math. Comput., 219, 9043-9056, (2013) · Zbl 1290.74038
[14] Cockburn, B; Gopalakrishnan, J; Guzmán, J, A new elasticity element made for enforcing weak stress symmetry, Math. Comp., 79, 1331-1349, (2010) · Zbl 1369.74078
[15] de Boer, R.: Trends in Continuum Mechanics of Porous Media, Theory and Applications of Transport in Porous Media, vol. 18. Springer, Dordrecht (2005) · Zbl 1085.74002
[16] Fraejis de Veubeke, B.M.: Stress function approach. In: Proceedings of the World Congress on Finite Element Methods in Structural Mechanics, vol. 5, pp. J.1 - J.51 (1975)
[17] Lawrence, C.: Evans, Partial differential equations, Graduate Studies in Mathematics, vol. 19. American Mathematical Society, Providence (1998)
[18] Falk, RS; Boffi, D (ed.); Gastaldi, L (ed.), Finite elements for linear elasticity, No. 1939, (2008), New York
[19] Girault, V., Raviart, P.-A.: Finite Element Methods for Navier-Stokes Equations, Springer Series in Computational Mathematics, vol. 5, Springer, Berlin, Theory and algorithms (1986) · Zbl 0585.65077
[20] Gopalakrishnan, J; Guzmán, J, A second elasticity element using the matrix bubble, IMA J. Numer. Anal., 32, 352-372, (2012) · Zbl 1232.74101
[21] Gurtin, M.E.: An Introduction to Continuum Mechanics, Mathematics in Science and Engineering, vol. 158. Academic Press Inc., New York (1981) · Zbl 0559.73001
[22] Guzmán, J, A unified analysis of several mixed methods for elasticity with weak stress symmetry, J. Sci. Comput., 44, 156-169, (2010) · Zbl 1203.74017
[23] Hairer, E., Lubich, C., Roche, M.: The Numerical Solution of Differential-Algebraic Systems by Runge-Kutta Methods. Lecture Notes in Mathematics, vol. 1409. Springer, Berlin (1989) · Zbl 0683.65050
[24] Korsawe, J., Starke, G.: A least-squares mixed finite element method for Biot’s consolidation problem in porous media. SIAM J. Numer. Anal. 43(1), 318-339 (electronic) (2005) · Zbl 1086.76041
[25] Lee, JJ, Towards a unified analysis of mixed methods for elasticity with weakly symmetric stress, Adv. Comput. Math., 42, 361-376, (2016) · Zbl 1382.74120
[26] Lewis, R.W., Schrefler, B.A.: The Finite Element Method in the Static and Dynamic Deformation and Consolidation of Porous Media. Numerical Methods in Engineering, Wiley, New Jersey (1998) · Zbl 0935.74004
[27] Logg, A., Mardal, K.-A., Wells, G.N. (eds.): Automated solution of differential equations by the finite element method, Lecture Notes in Computational Science and Engineering, vol. 84, Springer, Heidelberg, The FEniCS book (2012) · Zbl 1247.65105
[28] Murad, MA; Loula, AFD, Improved accuracy in finite element analysis of biot’s consolidation problem, Comput. Methods Appl. Mech. Eng., 95, 359-382, (1992) · Zbl 0760.73068
[29] Murad, MA; Loula, AFD, On stability and convergence of finite element approximations of biot’s consolidation problem, Int. J. Numer. Methods Eng., 37, 645-667, (1994) · Zbl 0791.76047
[30] Murad, MA; Thomée, V; Loula, AFD, Asymptotic behavior of semidiscrete finite-element approximations of biot’s consolidation problem, SIAM J. Numer. Anal., 33, 1065-1083, (1996) · Zbl 0854.76053
[31] Nédélec, J-C, Mixed finite elements in \(\mathbb{R}^{3}\), Numer. Math., 35, 315-341, (1980) · Zbl 0419.65069
[32] Nédélec, J-C, A new family of mixed finite elements in \(\mathbf{R}^3\), Numer. Math., 50, 57-81, (1986) · Zbl 0625.65107
[33] Phillips, PJ; Wheeler, MF, A coupling of mixed and continuous Galerkin finite element methods for poroelasticity. I. the continuous in time case, Comput. Geosci., 11, 131-144, (2007) · Zbl 1117.74015
[34] Phillips, PJ; Wheeler, MF, A coupling of mixed and continuous Galerkin finite element methods for poroelasticity. II. the discrete-in-time case, Comput. Geosci., 11, 145-158, (2007) · Zbl 1117.74016
[35] Phillips, PJ; Wheeler, MF, A coupling of mixed and discontinuous Galerkin finite-element methods for poroelasticity, Comput. Geosci., 12, 417-435, (2008) · Zbl 1155.74048
[36] Raviart, P.A., Thomas, J.M.: A mixed finite element method for 2nd order elliptic problems, mathematical aspects of finite element methods. In: Proceedings of Conference, Consiglio Naz. delle Ricerche (C.N.R.), Rome, 1975, Springer, Berlin, pp. 292-315. Lecture Notes in Math., vol. 606 (1977) · Zbl 0563.65072
[37] Showalter, RE, Diffusion in poro-elastic media, J. Math. Anal. Appl., 251, 310-340, (2000) · Zbl 0979.74018
[38] Stenberg, R, On the construction of optimal mixed finite element methods for the linear elasticity problem, Numer. Math., 48, 447-462, (1986) · Zbl 0563.65072
[39] Stenberg, R, A family of mixed finite elements for the elasticity problem, Numer. Math., 53, 513-538, (1988) · Zbl 0632.73063
[40] Yi, S-Y, A coupling of nonconforming and mixed finite element methods for biot’s consolidation model, Numer. Methods Partial Differ. Equ., 29, 1749-1777, (2013) · Zbl 1274.74455
[41] Yi, S-Y, Convergence analysis of a new mixed finite element method for biot’s consolidation model, Numer. Methods Partial Differ. Equ., 30, 1189-1210, (2014) · Zbl 1350.74024
[42] Yosida, K.: Functional analysis, 6th edn. Springer, Springer Classics in Mathematics, New York (1980) · Zbl 0435.46002
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.