×

Optimal control of an influenza model with seasonal forcing and age-dependent transmission rates. (English) Zbl 1368.92181

Summary: This study considers an optimal intervention strategy for influenza outbreaks. Variations in the SEIAR model are considered to include seasonal forcing and age structure, and control strategies include vaccination, antiviral treatment, and social distancing such as school closures. We formulate an optimal control problem by minimizing the incidence of influenza outbreaks while considering intervention costs. We examine the effects of delays in vaccine production, seasonal forcing, and age-dependent transmission rates on the optimal control and suggest some optimal strategies through numerical simulations.

MSC:

92D30 Epidemiology
49N90 Applications of optimal control and differential games
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Arino, J.; Brauer, F.; van den Driessche, P.; Watmough, J.; Wu, J., Simple models for containment of a pandemic, J. R. Soc. Interface, 3, 453-457 (2006)
[2] Arino, J.; Brauer, F.; van den Driessche, P.; Watmough, J.; Wu, J., A model for influenza with vaccination and antiviral treatment, J. Math. Biol., 253, 118-130 (2008) · Zbl 1398.92147
[3] Balicer, R. D.; Huerta, M.; Davidovitch, N.; Grotto, I., Cost-benefit of stockpiling drugs for influenza pandemic, Emerg. Infect. Dis., 11, 1280-1282 (2005)
[4] Blayneh, K.; Cao, Y.; Kwon, H.-D., Optimal control of vector-borne diseasetreatment and prevention, Discrete Contin. Dyn. Syst. Ser. B, 11, 587-611 (2009) · Zbl 1162.92034
[5] Brauer, F., Some simple epidemic models, Math. BioSci. Eng., 3, 1-15 (2006) · Zbl 1089.92042
[6] Colizza, V.; Barrat, A.; Barthelemy, M.; Valleron, A. J.; Vespignani, A., Modeling the worldwide spread of pandemic influenzabaseline case and containment interventions, PLoS Med., 4, 1, e13 (2007)
[7] Couzin, J., Ethicists to guide rationing of flu vaccine, Science, 306, 5698, 960-961 (2004)
[8] Cropper, M. L.; Aydede, S. K.; Portney, P. R., Preferences for life-saving programshow the public discounts time and age, J. Risk Uncertain., 8, 243-265 (1994)
[9] Dushoff, J.; Plotkin, J. B.; Levin, S. A.; Earn, D. J.D., Dynamical resonance can account for seasonality of influenza epidemics, Proc. Natl. Aacd. Sci., 101, November 30 (48), 16915-16916 (2004)
[10] Emanuel, E. J.; Wertheimer, A., Who should get influenza vaccine when not all can?, Science, 312, 5775, 854-855 (2006)
[12] Ferguson, N. M.; Cummings, D. A.T.; Cauchemez, S.; Fraser, C.; Riley, S.; Meeyai, A.; Iamsirithaworn, S.; Burke, D. S., Strategies for containing an emerging influenza pandemic in Southeast Asia, Nature, 437, 209-214 (2005)
[13] Fleming, W. H.; Rishel, R. W., Deterministic and Stochastic Optimal Control (1975), Springer-Verlag: Springer-Verlag New York · Zbl 0323.49001
[14] Gaff, H.; Schaefer, E., Optimal control applied to vaccination and treatment strategies for various epidemiological models, Math. Biosci. Eng., 6, July (3), 469-492 (2009) · Zbl 1169.49018
[15] Gani, R.; Hughes, H.; Griffin, T.; Medlock, J.; Leach, S., Potential impact of antiviral use on hospitalizations during influenza pandemic, Emerg. Infect. Dis., 11, 1355-1362 (2005)
[16] Gojovic, M. Z.; Sander, B.; Fisman, D.; Krahn, M. D.; Bauch, C. T., Modelling mitigation strategies for pandemic (H1N1) 2009, Can. Med. Assoc. J., 181, 673-680 (2009)
[17] Goldstein, E.; Apolloni, A.; Lewis, B.; Miller, J. C.; Macauley, M., Distribution of vaccine/antivirals and the least spread line in a stratified population, J. R. Soc. Interface, 7, 755-764 (2010)
[18] Gunzburger, M. D., Perspectives in Flow Control and Optimization (2003), SIAM: SIAM Philadelphia · Zbl 1088.93001
[20] Hethcote, H. W., A thousand and one epidemic models, (Levin, S. A., Frontiers in Theoretical Biology (1994), Springer-Verlag), 504-515 · Zbl 0819.92020
[21] Hethcote, H. W., The mathematics of infectious diseases, SIAM Rev., 42, 599-653 (2000) · Zbl 0993.92033
[22] Joshi, H. R., Optimal control of an HIV immunology model, Optimal Control Appl. Meth., 23, 199-213 (2002) · Zbl 1072.92509
[23] Jung, E.; Lenhart, S.; Feng, Z., Optimal control of treatments in a two-strain tuberculosis, Discrete Contin. Dyn. Syst. Ser. B, 2, 473-482 (2002) · Zbl 1005.92018
[25] Lipsitch, M., Does aneuploidy or mutation start cancer?, Science, 307, 5706, 41-42 (2005)
[26] Longini, I. M.; Halloran, M. E.; Nizam, A.; Yang, Y., Containing pandemic influenza with antiviral agents, Am. J. Epidemiol., 159, 623-633 (2004)
[27] Longini, I. M.; Nizam, A.; Xu, S.; Ungchusak, K.; Hanshaoworakul, W.; Cummings, D. A.T.; Halloran, M. E., Containing pandemic influenza at the source, Science, 309, 1083-1087 (2005)
[29] Pontryagin, L. S.; Boltyanskii, V. G.; Gamkrelidze, R. V.; Mishchenko, E. F., The Mathematical Theory of Optimal Processes (1962), Interscience Publishers John Wiley and Sons, Inc.: Interscience Publishers John Wiley and Sons, Inc. New York, London, p. 28 · Zbl 0102.32001
[30] Sypsa, V.; Pavlopoulou, I.; Hatzakis, A., Use of an inactivated vaccine in mitigating pandemic influenza A(H1N1) spreada modelling study to assess the impact of vaccination timing and prioritisation strategies, Euro Surveill., 14, 41, 235-238 (2009)
[32] Van den Driessche, P.; Watmough, J., Reproduction numbers and subthreshold endemic equilibria for compartmental models of disease transmission, Math. Biosci., 180, 29-48 (2002) · Zbl 1015.92036
[36] Wu, J. T.; Riley, S.; Fraser, C.; Leung, G. M., Reducing the impact of the next influenza pandemic using household-based public health interventions, PLoS Med., 3, 9, e361 (2007)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.