Gedeon, Katie R. Kazhdan-Lusztig polynomials of thagomizer matroids. (English) Zbl 1369.05029 Electron. J. Comb. 24, No. 3, Research Paper P3.12, 10 p. (2017). Summary: We introduce thagomizer matroids and compute the Kazhdan-Lusztig polynomial of a rank \(n+1\) thagomizer matroid by showing that the coefficient of \(t^k\) is equal to the number of Dyck paths of semilength \(n\) with \(k\) long ascents. We also give a conjecture for the \(S_n\)-equivariant Kazhdan-Lusztig polynomial of a thagomizer matroid. Cited in 7 Documents MSC: 05B35 Combinatorial aspects of matroids and geometric lattices 05A15 Exact enumeration problems, generating functions 20C30 Representations of finite symmetric groups 52B40 Matroids in convex geometry (realizations in the context of convex polytopes, convexity in combinatorial structures, etc.) Keywords:matroid theory; Kazhdan-Lusztig polynomials; generating functions; Schur functions PDF BibTeX XML Cite \textit{K. R. Gedeon}, Electron. J. Comb. 24, No. 3, Research Paper P3.12, 10 p. (2017; Zbl 1369.05029) Full Text: Link arXiv